Mapara Varun, Barua Arup, Turkowski Volodymyr, Trinh M Tuan, Stevens Christopher, Liu Hengzhou, Nugera Florence A, Kapuruge Nalaka, Gutierrez Humberto Rodriguez, Liu Fang, Zhu Xiaoyang, Semenov Dmitry, McGill Stephen A, Pradhan Nihar, Hilton David J, Karaiskaj Denis
Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
Department of Physics, University of Central Florida, Orlando, Florida 32816, United States.
Nano Lett. 2022 Feb 23;22(4):1680-1687. doi: 10.1021/acs.nanolett.1c04667. Epub 2022 Feb 7.
Magnetic field- and polarization-dependent measurements on bright and dark excitons in monolayer WSe combined with time-dependent density functional theory calculations reveal intriguing phenomena. Magnetic fields up to 25 T parallel to the WSe plane lead to a partial brightening of the energetically lower lying exciton, leading to an increase of the dephasing time. Using a broadband femtosecond pulse excitation, the bright and partially allowed excitonic state can be excited simultaneously, resulting in coherent quantum beating between these states. The magnetic fields perpendicular to the WSe plane energetically shift the bright and dark excitons relative to each other, resulting in the hybridization of the states at the K and K' valleys. Our experimental results are well captured by time-dependent density functional theory calculations. These observations show that magnetic fields can be used to control the coherent dephasing and coupling of the optical excitations in atomically thin semiconductors.
对单层WSe₂中亮激子和暗激子进行的磁场和偏振相关测量,结合含时密度泛函理论计算,揭示了有趣的现象。平行于WSe₂平面的高达25 T的磁场会导致能量较低的激子部分变亮,从而使退相时间增加。使用宽带飞秒脉冲激发,可以同时激发亮激子和部分允许的激子态,导致这些态之间产生相干量子拍频。垂直于WSe₂平面的磁场会使亮激子和暗激子在能量上相对移动,导致K和K'谷处的态发生杂化。含时密度泛函理论计算很好地捕捉了我们的实验结果。这些观察结果表明,磁场可用于控制原子级薄半导体中光学激发的相干退相和耦合。