Suppr超能文献

一种用于钙钛矿太阳能电池的基于π-扩展三苯胺的无掺杂空穴传输材料 杂原子取代

A π-extended triphenylamine based dopant-free hole-transporting material for perovskite solar cells heteroatom substitution.

作者信息

Hao Mengyao, Tan Davin, Chi Weijie, Li Ze-Sheng

机构信息

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.

出版信息

Phys Chem Chem Phys. 2022 Feb 16;24(7):4635-4643. doi: 10.1039/d1cp05503h.

Abstract

The triphenylamine (TPA) group is an important molecular fragment that has been widely used to design efficient hole-transporting materials (HTMs). However, the applicability of triphenylamine derived HTMs that exhibit low hole mobility and conductivity in commercial perovskite solar cells (PSCs) has been limited. To aid in the development of highly desirable TPA-based HTMs, we utilized a combination of density functional theory (DFT) and Marcus electron transfer theory to investigate the effect of heteroatoms, including boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, germanium, arsenic, and selenium atoms, on the energy levels, optical properties, hole mobility, and interfacial charge transfer behaviors of a series of HTMs. Our computational results revealed that compared with the commonly referenced OMeTPA-TPA molecule, most heteroatoms lead to deeper energy levels. Furthermore, these heteroatom-based HTMs exhibit improved hole mobility due to their more rigid molecular structures. More significantly, these heteroatoms also enhance the interface interaction in perovskite/HTM systems, resulting in a larger internal electric field. Our work represents a new approach that aids in the understanding and designing of more efficient and better performing HTMs, which we hope can be used as a platform to propel the developmental commercialization of these highly desirable PSCs.

摘要

三苯胺(TPA)基团是一种重要的分子片段,已被广泛用于设计高效的空穴传输材料(HTM)。然而,在商业钙钛矿太阳能电池(PSC)中,空穴迁移率和电导率较低的三苯胺衍生HTM的适用性受到限制。为了有助于开发非常理想的基于TPA的HTM,我们结合密度泛函理论(DFT)和马库斯电子转移理论,研究了包括硼、碳、氮、氧、硅、磷、硫、锗、砷和硒原子在内的杂原子对一系列HTM的能级、光学性质、空穴迁移率和界面电荷转移行为的影响。我们的计算结果表明,与常用的参考OMeTPA-TPA分子相比,大多数杂原子会导致更深的能级。此外,这些基于杂原子的HTM由于其更刚性的分子结构而表现出改善的空穴迁移率。更重要的是,这些杂原子还增强了钙钛矿/HTM系统中的界面相互作用,从而产生更大的内电场。我们的工作代表了一种有助于理解和设计更高效、性能更好的HTM的新方法,我们希望它可以作为一个平台来推动这些非常理想的PSC的商业化发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验