Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
Cell Mol Life Sci. 2022 Feb 8;79(2):127. doi: 10.1007/s00018-022-04165-w.
Calmodulin (CaM), a ubiquitous and highly conserved Ca-sensor protein involved in the regulation of over 300 molecular targets, has been recently associated with severe forms of lethal arrhythmia. Here, we investigated how arrhythmia-associated mutations in CaM localized at the C-terminal lobe alter the molecular recognition with Ryanodine receptor 2 (RyR2), specifically expressed in cardiomyocytes. We performed an extensive structural, thermodynamic, and kinetic characterization of the variants D95V/H in the EF3 Ca-binding motif and of the D129V and D131H/E variants in the EF4 motif, and probed their interaction with RyR2. Our results show that the specific structural changes observed for individual CaM variants do not extend to the complex with the RyR2 target. Indeed, some common alterations emerge at the protein-protein interaction level, suggesting the existence of general features shared by the arrhythmia-associated variants. All mutants showed a faster rate of dissociation from the target peptide than wild-type CaM. Integration of spectroscopic data with exhaustive molecular dynamics simulations suggests that, in the presence of Ca, functional recognition involves allosteric interactions initiated by the N-terminal lobe of CaM, which shows a lower affinity for Ca compared to the C-terminal lobe in the isolated protein.
钙调蛋白(CaM)是一种普遍存在且高度保守的 Ca2+ 传感器蛋白,参与调节超过 300 个分子靶标,最近与严重致死性心律失常有关。在这里,我们研究了位于 C 端结构域的 CaM 中的心律失常相关突变如何改变与心肌细胞中特异性表达的 Ryanodine 受体 2(RyR2)的分子识别。我们对 EF3 Ca 结合模体中的 D95V/H 突变和 EF4 模体中的 D129V 和 D131H/E 突变进行了广泛的结构、热力学和动力学表征,并探测了它们与 RyR2 的相互作用。我们的结果表明,单个 CaM 变体观察到的特定结构变化不会扩展到与 RyR2 靶标的复合物。事实上,在蛋白质-蛋白质相互作用水平上出现了一些共同的改变,这表明心律失常相关变体存在一些共同的特征。所有突变体与野生型 CaM 相比,从靶肽解离的速率更快。光谱数据与详尽的分子动力学模拟的整合表明,在 Ca2+ 存在下,功能识别涉及由 CaM 的 N 端结构域引发的变构相互作用,与分离蛋白中的 C 端结构域相比,该结构域对 Ca2+ 的亲和力较低。