Gupta Nitika, Richards Ella M B, Morris Vanessa S, Morris Rachael, Wadmore Kirsty, Held Marie, McCormick Liam, Prakash Ohm, Dart Caroline, Helassa Nordine
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Acta Physiol (Oxf). 2025 Feb;241(2):e14276. doi: 10.1111/apha.14276.
Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship. Our study focuses on the L-type calcium channel Ca1.2, a crucial component of the ventricular action potential and excitation-contraction coupling.
We used circular dichroism (CD), H-N HSQC NMR, and trypsin digestion to determine the structural and stability properties of CaM variants. The affinity of CaM for Ca and interaction of Ca/CaM with Ca1.2 (IQ and NSCaTE domains) were investigated using intrinsic tyrosine fluorescence and isothermal titration calorimetry (ITC), respectively. The effect of CaM variants of Ca1.2 activity was determined using HEK293-Ca1.2 cells (B'SYS) and whole-cell patch-clamp electrophysiology.
Using a combination of protein biophysics and structural biology, we show that the disease-associated mutations D131E and Q135P mutations alter apo/CaM structure and stability. In the Ca-bound state, D131E and Q135P exhibited reduced Ca binding affinity, significant structural changes, and altered interaction with Ca1.2 domains (increased affinity for Ca1.2-IQ and decreased affinity for Ca1.2-NSCaTE). We show that the mutations dramatically impair Ca-dependent inactivation (CDI) of Ca1.2, which would contribute to abnormal Ca influx, leading to disrupted Ca handling, characteristic of cardiac arrhythmia syndromes.
These findings provide insights into the molecular mechanisms behind arrhythmia caused by calmodulin mutations, contributing to our understanding of cardiac syndromes at a molecular and cellular level.
长QT综合征(LQTS)和儿茶酚胺能多形性室性心动过速(CPVT)是遗传性心脏疾病,通常由离子通道突变引起。这些心律失常综合征最近与钙调蛋白(CaM)变体有关。在此,我们研究致心律失常变体D131E和Q135P对CaM结构-功能关系的影响。我们的研究聚焦于L型钙通道Ca1.2,它是心室动作电位和兴奋-收缩偶联的关键组成部分。
我们使用圆二色性(CD)、H-N HSQC NMR和胰蛋白酶消化来确定CaM变体的结构和稳定性特性。分别使用内在酪氨酸荧光和等温滴定量热法(ITC)研究CaM对钙的亲和力以及Ca/CaM与Ca1.2(IQ和NSCaTE结构域)的相互作用。使用HEK293-Ca1.2细胞(B'SYS)和全细胞膜片钳电生理学确定CaM变体对Ca1.2活性的影响。
通过结合蛋白质生物物理学和结构生物学方法,我们发现与疾病相关的突变D131E和Q135P改变了无钙/钙调蛋白的结构和稳定性。在钙结合状态下,D131E和Q135P表现出降低的钙结合亲和力、显著的结构变化以及与Ca1.2结构域相互作用的改变(对Ca1.2-IQ的亲和力增加,对Ca1.2-NSCaTE的亲和力降低)。我们表明这些突变显著损害了Ca1.2的钙依赖性失活(CDI),这将导致异常的钙内流,进而导致钙处理紊乱,这是心律失常综合征的特征。
这些发现为钙调蛋白突变引起的心律失常背后的分子机制提供了见解,有助于我们在分子和细胞水平上理解心脏综合征。