State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Anal Chem. 2022 Feb 22;94(7):3180-3187. doi: 10.1021/acs.analchem.1c04652. Epub 2022 Feb 8.
Cellular target identification plays an essential role in innovative drug development and pharmacological mechanism elucidation. However, very few practical experimental methodologies have been developed for identifying target proteins for supercomplex molecular systems such as biologically active phytochemicals or pharmaceutical compositions. To overcome this limitation, we synthesized gold nanoparticles (AuNPs) as solid scaffolds, which were bound with 4,4'-dihydroxybenzophenone (DHBP) as a photo-cross-linking group on the surface. Then, DHBP-modified AuNPs cross-linked various organic compounds from phytochemicals under ultraviolet radiation via carbene reactions, H-C bond insertion, for catalytic C-C bond formation. We next used the phytochemical-cross-linked AuNPs (phytoAuNPs) to pull down potential binding proteins from brain tissue lysate and identified 13 neuroprotective targets by mass spectrometry analysis. As an exemplary study, we selected Hsp60 as a crucial cellular target to further screen 14 target-binding compounds from phytochemicals through surface plasmon resonance (SPR) analysis, followed by Hsp60 activity detection and neuroprotective effect assay in cells. Collectively, this gold nanoparticle-based photo-cross-linking strategy can serve as a useful platform for discovering novel cellular targets for supercomplex molecular systems and help to explore pharmacological mechanisms and active substances.
细胞靶标鉴定在创新药物开发和药理学机制阐明中起着至关重要的作用。然而,对于生物活性植物化学物质或药物组合物等超复杂分子系统的靶标蛋白的鉴定,很少有实用的实验方法得到发展。为了克服这一限制,我们合成了金纳米粒子(AuNPs)作为固体支架,其表面结合了 4,4'-二羟基二苯甲酮(DHBP)作为光交联基团。然后,DHBP 修饰的 AuNPs 在紫外辐射下通过卡宾反应、H-C 键插入反应交联各种来自植物化学物质的有机化合物,用于催化 C-C 键形成。接下来,我们使用植物化学交联的 AuNPs(phytoAuNPs)从脑组织裂解物中下拉潜在的结合蛋白,并通过质谱分析鉴定了 13 个神经保护靶标。作为一个示例研究,我们选择 Hsp60 作为关键的细胞靶标,通过表面等离子体共振(SPR)分析进一步从植物化学物质中筛选 14 个靶标结合化合物,然后在细胞中检测 Hsp60 活性和神经保护作用。总之,这种基于金纳米粒子的光交联策略可以作为发现超复杂分子系统新型细胞靶标的有用平台,并有助于探索药理学机制和活性物质。