Suppr超能文献

重构神经网络:过完备表示中的深度结构

Reframing Neural Networks: Deep Structure in Overcomplete Representations.

作者信息

Murdock Calvin, Cazenavette George, Lucey Simon

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):964-979. doi: 10.1109/TPAMI.2022.3149445. Epub 2022 Dec 5.

Abstract

In comparison to classical shallow representation learning techniques, deep neural networks have achieved superior performance in nearly every application benchmark. But despite their clear empirical advantages, it is still not well understood what makes them so effective. To approach this question, we introduce deep frame approximation: a unifying framework for constrained representation learning with structured overcomplete frames. While exact inference requires iterative optimization, it may be approximated by the operations of a feed-forward deep neural network. We indirectly analyze how model capacity relates to frame structures induced by architectural hyperparameters such as depth, width, and skip connections. We quantify these structural differences with the deep frame potential, a data-independent measure of coherence linked to representation uniqueness and stability. As a criterion for model selection, we show correlation with generalization error on a variety of common deep network architectures and datasets. We also demonstrate how recurrent networks implementing iterative optimization algorithms can achieve performance comparable to their feed-forward approximations while improving adversarial robustness. This connection to the established theory of overcomplete representations suggests promising new directions for principled deep network architecture design with less reliance on ad-hoc engineering.

摘要

与传统的浅层表示学习技术相比,深度神经网络在几乎每个应用基准测试中都取得了卓越的性能。然而,尽管它们具有明显的经验优势,但人们仍然不太清楚是什么使它们如此有效。为了解决这个问题,我们引入了深度框架近似:一种用于基于结构化超完备框架的约束表示学习的统一框架。虽然精确推理需要迭代优化,但它可以通过前馈深度神经网络的操作来近似。我们间接分析了模型容量如何与由诸如深度、宽度和跳跃连接等架构超参数所诱导的框架结构相关。我们用深度框架势来量化这些结构差异,深度框架势是一种与表示唯一性和稳定性相关的数据无关的相干性度量。作为模型选择的标准,我们展示了它与各种常见深度网络架构和数据集上的泛化误差的相关性。我们还展示了实现迭代优化算法的循环网络如何能够在提高对抗鲁棒性的同时,实现与它们的前馈近似相当的性能。这种与已建立的超完备表示理论的联系为原则性的深度网络架构设计指明了有前景的新方向,减少了对临时工程的依赖。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验