State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China.
J Neurosci. 2022 Mar 30;42(13):2631-2646. doi: 10.1523/JNEUROSCI.1459-21.2022. Epub 2022 Feb 8.
Mutations in the () gene encoding α-aminoadipic semialdehyde synthase lead to hyperlysinemia-I, a benign metabolic variant without clinical significance, and hyperlysinemia-II with developmental delay and intellectual disability. Although both forms of hyperlysinemia display biochemical phenotypes of questionable clinical significance, an association between neurologic disorder and a pronounced biochemical abnormality remains a challenging clinical question. Here, we report that Aass mutant male and female mice carrying the R65Q mutation in α-ketoglutarate reductase (LKR) domain have an elevated cerebral lysine level and a normal brain development, whereas the Aass mutant mice carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain exhibit elevations of both cerebral lysine and saccharopine levels and a smaller brain with defective neuronal development. Mechanistically, the accumulated saccharopine, but not lysine, leads to impaired neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). While extracellular supplementation of GPI restores defective neuronal development caused by G498E mutation in SDH of Aass. Altogether, our findings not only unravel the requirement for saccharopine degradation in neuronal development, but also provide the mechanistic insights for understanding the neurometabolic disorder of hyperlysinemia-II. The association between neurologic disorder and a pronounced biochemical abnormality in hyperlysinemia remains a challenging clinical question. Here, we report that mice carrying the R65Q mutation in lysine α-ketoglutarate reductase (LKR) domain of aminoadipate-semialdehyde synthase (AASS) have an elevated cerebral lysine levels and a normal brain development, whereas those carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain of AASS exhibit an elevation of both cerebral lysine and saccharopine and a small brain with defective neuronal development. Furthermore, saccharopine impairs neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). These findings demonstrate saccharopine degradation is essential for neuronal development.
突变 () 基因编码的 α-氨基己二酸半醛合酶导致高赖氨酸血症-I,这是一种良性代谢变异,没有临床意义,以及高赖氨酸血症-II,伴有发育迟缓、智力残疾。虽然这两种形式的高赖氨酸血症都表现出生化表型,但神经紊乱与明显的生化异常之间的关联仍然是一个具有挑战性的临床问题。在这里,我们报告携带 α-酮戊二酸还原酶 (LKR) 结构域 R65Q 突变的 Aass 突变雄性和雌性小鼠具有升高的脑赖氨酸水平和正常的脑发育,而携带 saccharopine 脱氢酶 (SDH) 结构域 G489E 突变的 Aass 突变小鼠则表现出脑赖氨酸和 saccharopine 水平升高以及脑体积减小和神经元发育缺陷。在机制上,积累的 saccharopine 而不是赖氨酸通过抑制葡萄糖-6-磷酸异构酶 (GPI) 的神经营养作用导致神经元发育受损。虽然细胞外补充 GPI 可以恢复 Aass 中 SDH 的 G498E 突变引起的神经元发育缺陷。总之,我们的研究结果不仅揭示了 saccharopine 降解在神经元发育中的必要性,而且为理解高赖氨酸血症-II 的神经代谢紊乱提供了机制见解。高赖氨酸血症中神经紊乱与明显的生化异常之间的关联仍然是一个具有挑战性的临床问题。在这里,我们报告携带氨基酸-半醛合酶 (AASS) 赖氨酸 α-酮戊二酸还原酶 (LKR) 结构域 R65Q 突变的小鼠具有升高的脑赖氨酸水平和正常的脑发育,而携带 AASS 中 saccharopine 脱氢酶 (SDH) 结构域 G489E 突变的小鼠则表现出脑赖氨酸和 saccharopine 水平升高以及脑体积减小和神经元发育缺陷。此外,saccharopine 通过抑制葡萄糖-6-磷酸异构酶 (GPI) 的神经营养作用损害神经元发育。这些发现表明 saccharopine 降解对于神经元发育是必不可少的。