FCI, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100, Malaysia.
Technology Studies Department, Endicott College, Woosong University, Daejeon, 100-300, South Korea.
F1000Res. 2021 Nov 24;10:1190. doi: 10.12688/f1000research.73156.2. eCollection 2021.
This paper focuses on advances in crowd control study with an emphasis on high-density crowds, particularly Hajj crowds. Video analysis and visual surveillance have been of increasing importance in order to enhance the safety and security of pilgrimages in Makkah, Saudi Arabia. Hajj is considered to be a particularly distinctive event, with hundreds of thousands of people gathering in a small space, which does not allow a precise analysis of video footage using advanced video and computer vision algorithms. This research proposes an algorithm based on a Convolutional Neural Networks model specifically for Hajj applications. Additionally, the work introduces a system for counting and then estimating the crowd density.
The model adopts an architecture which detects each person in the crowd, spots head location with a bounding box and does the counting in our own novel dataset (HAJJ-Crowd).
Our algorithm outperforms the state-of-the-art method, and attains a remarkable Mean Absolute Error result of 200 (average of 82.0 improvement) and Mean Square Error of 240 (average of 135.54 improvement).
In our new HAJJ-Crowd dataset for evaluation and testing, we have a density map and prediction results of some standard methods.
本文重点介绍了人群控制研究的进展,特别是针对高密度人群,如朝觐人群。为了提高沙特麦加朝圣活动的安全性,视频分析和视觉监控变得越来越重要。朝觐被认为是一个特别独特的事件,成千上万的人聚集在一个小空间里,这使得使用先进的视频和计算机视觉算法对视频片段进行精确分析变得不可能。本研究提出了一种基于卷积神经网络模型的算法,专门用于朝觐应用。此外,这项工作还引入了一种用于计数和估计人群密度的系统。
该模型采用一种架构,用于检测人群中的每个人,用边界框定位头部位置,并在我们自己的新数据集(HAJJ-Crowd)中进行计数。
我们的算法优于最先进的方法,在平均 82.0%的显著改进下,取得了 200 的平均绝对误差结果,在平均 135.54%的显著改进下,取得了 240 的均方误差结果。
在我们的新 HAJJ-Crowd 数据集进行评估和测试时,我们有密度图和一些标准方法的预测结果。