Suppr超能文献

Compatibility in imputation specification.

作者信息

Du Han, Alacam Egamaria, Mena Stefany, Keller Brian T

机构信息

Department of Psychology, University of California, Pritzker Hall, 502 Portola Plaza, Los Angeles, CA, 90095, USA.

Department of Educational Psychology, University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Behav Res Methods. 2022 Dec;54(6):2962-2980. doi: 10.3758/s13428-021-01749-5. Epub 2022 Feb 9.

Abstract

Missing data such as data missing at random (MAR) are unavoidable in real data and have the potential to undermine the validity of research results. Multiple imputation is one of the most widely used MAR-based methods in education and behavioral science applications. Arbitrarily specifying imputation models can lead to incompatibility and cause biased estimation. Building on the recent developments of model-based imputation and Arnold's compatibility work, this paper systematically summarizes when the traditional fully conditional specification (FCS) is applicable and how to specify a model-based imputation model if needed. We summarize two Compatibility Requirements to help researchers check compatibility more easily and a decision tree to check whether the traditional FCS is applicable in a given scenario. Additionally, we present a clear overview of two types of model-based imputation: the sequential and separate specifications. We illustrate how to specify model-based imputation with examples. Additionally, we provide example code of a free software program, Blimp, for implementing model-based imputation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验