Li Jun, Lu Hengyu, Ng Patrick Kwok-Shing, Pantazi Angeliki, Ip Carman Ka Man, Jeong Kang Jin, Amador Bianca, Tran Richard, Tsang Yiu Huen, Yang Lixing, Song Xingzhi, Dogruluk Turgut, Ren Xiaojia, Hadjipanayis Angela, Bristow Christopher A, Lee Semin, Kucherlapati Melanie, Parfenov Michael, Tang Jiabin, Seth Sahil, Mahadeshwar Harshad S, Mojumdar Kamalika, Zeng Dong, Zhang Jianhua, Protopopov Alexei, Seidman Jonathan G, Creighton Chad J, Lu Yiling, Sahni Nidhi, Shaw Kenna R, Meric-Bernstam Funda, Futreal Andrew, Chin Lynda, Scott Kenneth L, Kucherlapati Raju, Mills Gordon B, Liang Han
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
Sci Adv. 2022 Feb 11;8(6):eabm2382. doi: 10.1126/sciadv.abm2382. Epub 2022 Feb 9.
Fusion genes represent a class of attractive therapeutic targets. Thousands of fusion genes have been identified in patients with cancer, but the functional consequences and therapeutic implications of most of these remain largely unknown. Here, we develop a functional genomic approach that consists of efficient fusion reconstruction and sensitive cell viability and drug response assays. Applying this approach, we characterize ~100 fusion genes detected in patient samples of The Cancer Genome Atlas, revealing a notable fraction of low-frequency fusions with activating effects on tumor growth. Focusing on those in the RTK-RAS pathway, we identify a number of activating fusions that can markedly affect sensitivity to relevant drugs. Last, we propose an integrated, level-of-evidence classification system to prioritize gene fusions systematically. Our study reiterates the urgent clinical need to incorporate similar functional genomic approaches to characterize gene fusions, thereby maximizing the utility of gene fusions for precision oncology.
融合基因是一类颇具吸引力的治疗靶点。在癌症患者中已鉴定出数千种融合基因,但其中大多数的功能后果和治疗意义仍 largely 未知。在此,我们开发了一种功能基因组学方法,该方法包括高效的融合重建以及灵敏的细胞活力和药物反应测定。应用此方法,我们对在癌症基因组图谱患者样本中检测到的约 100 种融合基因进行了表征,揭示了相当一部分对肿瘤生长具有激活作用的低频融合基因。聚焦于 RTK-RAS 途径中的那些融合基因,我们鉴定出了一些可显著影响对相关药物敏感性的激活融合基因。最后,我们提出了一种综合的、证据水平分类系统,以系统地对基因融合进行优先级排序。我们的研究重申了临床迫切需要采用类似的功能基因组学方法来表征基因融合,从而最大限度地提高基因融合在精准肿瘤学中的效用。