Lu Hengyu, Villafane Nicole, Dogruluk Turgut, Grzeskowiak Caitlin L, Kong Kathleen, Tsang Yiu Huen, Zagorodna Oksana, Pantazi Angeliki, Yang Lixing, Neill Nicholas J, Kim Young Won, Creighton Chad J, Verhaak Roel G, Mills Gordon B, Park Peter J, Kucherlapati Raju, Scott Kenneth L
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.
Cancer Res. 2017 Jul 1;77(13):3502-3512. doi: 10.1158/0008-5472.CAN-16-2745. Epub 2017 May 16.
Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, , and as well as 20 previously uncharacterized fusion genes identified in The Cancer Genome Atlas datasets. In addition to confirming oncogenic activity of the known fusion oncogenes engineered by our construction strategy, we validated five novel fusion genes involving , and kinases that exhibited potent transforming activity and conferred sensitivity to FDA-approved kinase inhibitors. Our fusion construction strategy also enabled domain-function studies of fusion genes. Our results confirmed other reports that the transforming activity of fusions results from truncation-mediated loss of inhibitory domains within the N-terminus of the BRAF protein. mutations residing within this inhibitory region may provide a means for BRAF activation in cancer, therefore we leveraged the modular design of our fusion gene construction methodology to screen N-terminal domain mutations discovered in tumors that are wild-type at the mutation hotspot, V600. We identified an oncogenic mutation, F247L, whose expression robustly activated the MAPK pathway and sensitized cells to BRAF and MEK inhibitors. When applied broadly, these tools will facilitate rapid fusion gene construction for subsequent functional characterization and translation into personalized treatment strategies. .
致癌基因融合驱动着许多人类癌症,但需要能够更快揭示其功能作用的工具。在此,我们描述了一种用于构建融合基因以进行功能评估的方法。利用这一策略,我们构建了已知的融合致癌基因,以及在癌症基因组图谱数据集中鉴定出的20个此前未表征的融合基因。除了证实我们构建策略所构建的已知融合致癌基因的致癌活性外,我们还验证了涉及、和激酶的5个新型融合基因,这些基因表现出强大的转化活性,并对FDA批准的激酶抑制剂敏感。我们的融合构建策略还能够对融合基因进行结构域功能研究。我们的结果证实了其他报告,即融合的转化活性源于BRAF蛋白N端抑制结构域的截断介导缺失。位于该抑制区域内的突变可能为癌症中BRAF的激活提供一种方式,因此我们利用融合基因构建方法的模块化设计来筛选在肿瘤中发现的N端结构域突变,这些肿瘤在突变热点V600处为野生型。我们鉴定出一个致癌突变F247L,其表达强烈激活MAPK途径并使细胞对BRAF和MEK抑制剂敏感。广泛应用这些工具将有助于快速构建融合基因,以便后续进行功能表征并转化为个性化治疗策略。