Yonemura Mitsuharu, Nishibata Hitomi, Fujimura Rina, Ooura Natsumi, Hata Kengo, Fujiwara Kazuki, Kawano Kaori, Yamaguchi Itsuki, Terai Tomoyuki, Inubushi Yuichi, Inoue Ichiro, Yabuuchi Toshinori, Tono Kensuke, Yabashi Makina
Advanced Technology Research Laboratories, Nippon Steel Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo, 660-0891, Japan.
Hanshin Unit Osaka Testing Div., Nippon Steel Technology Corporation, 5-1-109 Shimaya, Osaka, 554-0024, Japan.
Sci Rep. 2022 Feb 9;12(1):2237. doi: 10.1038/s41598-022-06280-x.
This study evaluates phase transformation kinetics under ultrafast cooling using femtosecond X-ray diffraction for the operand measurements of the dislocation densities in Fe-0.1 mass% C-2.0 mass% Mn martensitic steel. To identify the phase transformation mechanism from austenite (γ) to martensite (α'), we used an X-ray free-electron laser and ultrafast heating and cooling techniques. A maximum cooling rate of 4.0 × 10 °C s was achieved using a gas spraying technique, which is applied immediately after ultrafast heating of the sample to 1200 °C at a rate of 1.2 × 10 °C s. The cooling rate was sufficient to avoid bainitic transformation, and the transformation during ultrafast cooling was successfully observed. Our results showed that the cooling rate affected the dislocation density of the γ phase at high temperatures, resulting in the formation of a retained γ owing to ultrafast cooling. It was discovered that Fe-0.1 mass% C-2.0 mass% Mn martensitic steels may be in an intermediate phase during the phase transformation from face-centered-cubic γ to body-centered-cubic α' during ultrafast cooling and that lattice softening occurred in carbon steel immediately above the martensitic-transformation starting temperature. These findings will be beneficial in the study, development, and industrial utilization of functional steels.
本研究利用飞秒X射线衍射评估了超快冷却下的相变动力学,用于对Fe-0.1质量%C-2.0质量%Mn马氏体钢中位错密度进行操作测量。为了确定从奥氏体(γ)到马氏体(α')的相变机制,我们使用了X射线自由电子激光以及超快加热和冷却技术。采用气体喷射技术实现了4.0×10℃/s的最大冷却速率,该技术在将样品以1.2×10℃/s的速率超快加热至1200℃后立即应用。冷却速率足以避免贝氏体转变,并且成功观察到了超快冷却过程中的转变。我们的结果表明,冷却速率影响了高温下γ相的位错密度,导致由于超快冷却而形成残余γ相。研究发现,Fe-0.1质量%C-2.0质量%Mn马氏体钢在从面心立方γ向体心立方α'的超快冷却相变过程中可能处于中间相,并且在碳钢中,紧挨着马氏体转变起始温度之上会发生晶格软化。这些发现将有助于功能钢的研究、开发和工业应用。