Suppr超能文献

利用碳纤维上的纳米反应器剪裁孔隙空间以限制硫化锡纳米片用于超稳定锂/钠离子电池

Tailoring the Void Space Using Nanoreactors on Carbon Fibers to Confine SnS Nanosheets for Ultrastable Lithium/Sodium-Ion Batteries.

作者信息

Cui Zhe, He Shu-Ang, Zhu Jinqi, Gao Mengluan, Wang Hao, Zhang Hao, Zou Rujia

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Research and Development Department of Shenzhen Zhenli Liquid Separation Technology Co., Ltd., Shenzhen, 518118, China.

出版信息

Small Methods. 2022 Apr;6(4):e2101484. doi: 10.1002/smtd.202101484. Epub 2022 Feb 10.

Abstract

Herein, a rational design of SnS nanosheets confined into bubble-like carbon nanoreactors anchored on N,S doped carbon nanofibers (SnS @C/CNF) is proposed to prepare the self-standing electrodes, which provides tunable void space on carbon fibers for the first time by introducing hollow carbon nanoreactors. The SnS @C/CNF provides the stable support with greatly enhanced ion and electron transport, alleviates aggregation and volume expansion of SnS nanosheets, and promotes the formation of abundant exposed edges and active sites. The volume balance between SnS nanosheets and hollow carbon nanoreactors is reached to accommodate the expansion of SnS during cycles by controlling the thickness of SnO shells, which achieves the best space utilization. The doping of N,S elements enhances the wettability of the carbon nanofiber matrix to electrolyte and Li ions and further improves the electrical conductivity of the whole electrode. Thus, the SnS @C/CNF benefits greatly in structural stability and pseudocapacitive capacity for improved lithium/sodium storage performance. As a result of these improvements, the self-standing SnS @C/CNF film electrodes exhibit the highly stable capacity of 964.8 and 767.6 mAh g at 0.2 A g , and excellent capacity retention of 87.4% and 82.4% after 1000 cycles at high current density for lithium-ion batteries and sodium-ion batteries, respectively.

摘要

在此,我们提出了一种合理设计,将硫化锡(SnS)纳米片限制在锚定在氮、硫掺杂碳纳米纤维(SnS@C/CNF)上的气泡状碳纳米反应器中,以制备自支撑电极,该设计首次通过引入中空碳纳米反应器在碳纤维上提供了可调节的空隙空间。SnS@C/CNF提供了稳定的支撑,极大地增强了离子和电子传输,减轻了SnS纳米片的聚集和体积膨胀,并促进了大量暴露边缘和活性位点的形成。通过控制氧化锡壳层的厚度,达到了SnS纳米片与中空碳纳米反应器之间的体积平衡,以适应循环过程中SnS的膨胀,从而实现了最佳的空间利用。氮、硫元素的掺杂增强了碳纳米纤维基体对电解质和锂离子的润湿性,并进一步提高了整个电极的电导率。因此,SnS@C/CNF在结构稳定性和赝电容容量方面受益匪浅,从而改善了锂/钠存储性能。由于这些改进,自支撑的SnS@C/CNF薄膜电极在0.2 A g的电流密度下,锂离子电池和钠离子电池分别表现出964.8和767.6 mAh g的高度稳定容量,以及在1000次循环后分别具有87.4%和82.4%的优异容量保持率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验