Suppr超能文献

基于结构的噬菌体 Qβ 突变体设计,作为下一代结合疫苗载体。

Structure Guided Design of Bacteriophage Qβ Mutants as Next Generation Carriers for Conjugate Vaccines.

机构信息

Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.

出版信息

ACS Chem Biol. 2022 Nov 18;17(11):3047-3058. doi: 10.1021/acschembio.1c00906. Epub 2022 Feb 10.

Abstract

Vaccines are critical tools to treat and prevent diseases. For an effective conjugate vaccine, the carrier is crucial, but few carriers are available for clinical applications. In addition, a drawback of current protein carriers is that high levels of antibodies against the carrier are induced by the conjugate vaccine, which are known to interfere with the immune responses against the target antigen. To overcome these challenges, we obtained the near atomic resolution crystal structure of an emerging protein carrier, i.e., the bacteriophage Qβ virus like particle. On the basis of the detailed structural information, novel mutants of bacteriophage Qβ (mQβ) have been designed, which upon conjugation with tumor associated carbohydrate antigens (TACAs), a class of important tumor antigens, elicited powerful anti-TACA IgG responses and yet produced lower levels of anticarrier antibodies as compared to those from the wild type Qβ-TACA conjugates. In a therapeutic model against an aggressive breast cancer in mice, 100% unimmunized mice succumbed to tumors in just 12 days even with chemotherapy. In contrast, 80% of mice immunized with the mQβ-TACA conjugate were completely free from tumors. Besides TACAs, to aid in the development of vaccines to protect against COVID-19, the mQβ based conjugate vaccine has been shown to induce high levels of IgG antibodies against peptide antigens from the SARS-CoV-2 virus, demonstrating its generality. Thus, mQβ is a promising next-generation carrier platform for conjugate vaccines, and structure-based rational design is a powerful strategy to develop new vaccine carriers.

摘要

疫苗是治疗和预防疾病的重要工具。对于有效的结合疫苗,载体至关重要,但可用于临床应用的载体却很少。此外,目前蛋白载体的一个缺点是,结合疫苗会诱导针对载体的高滴度抗体,这些抗体已知会干扰针对靶抗原的免疫反应。为了克服这些挑战,我们获得了新兴蛋白载体——噬菌体 Qβ病毒样颗粒的近原子分辨率晶体结构。基于详细的结构信息,我们设计了噬菌体 Qβ的新型突变体(mQβ),当与肿瘤相关碳水化合物抗原(TACA)结合时,mQβ-TACA 缀合物会引发强大的抗-TACA IgG 反应,但产生的抗载体抗体水平却低于野生型 Qβ-TACA 缀合物。在针对小鼠侵袭性乳腺癌的治疗模型中,未经免疫的小鼠在 12 天内全部死于肿瘤,即使接受化疗也是如此。相比之下,用 mQβ-TACA 缀合物免疫的 80%的小鼠完全没有肿瘤。除了 TACA,为了帮助开发针对 COVID-19 的疫苗,基于 mQβ的结合疫苗已被证明可以诱导针对 SARS-CoV-2 病毒肽抗原的高滴度 IgG 抗体,显示其通用性。因此,mQβ是一种有前途的下一代结合疫苗载体平台,基于结构的合理设计是开发新型疫苗载体的有力策略。

相似文献

1
Structure Guided Design of Bacteriophage Qβ Mutants as Next Generation Carriers for Conjugate Vaccines.
ACS Chem Biol. 2022 Nov 18;17(11):3047-3058. doi: 10.1021/acschembio.1c00906. Epub 2022 Feb 10.
2
Evaluation of Virus-Like Particle-Based Tumor-Associated Carbohydrate Immunogen in a Mouse Tumor Model.
Methods Enzymol. 2017;597:359-376. doi: 10.1016/bs.mie.2017.06.030. Epub 2017 Jul 26.
3
Boosting immunity to small tumor-associated carbohydrates with bacteriophage qβ capsids.
ACS Chem Biol. 2013;8(6):1253-62. doi: 10.1021/cb400060x. Epub 2013 Mar 29.
4
Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies.
Chembiochem. 2016 Jan;17(2):174-80. doi: 10.1002/cbic.201500499. Epub 2015 Dec 4.
5
Synthesis and Immunological Evaluation of Disaccharide Bearing MUC-1 Glycopeptide Conjugates with Virus-like Particles.
ACS Chem Biol. 2019 Oct 18;14(10):2176-2184. doi: 10.1021/acschembio.9b00381. Epub 2019 Sep 19.
6
Stereoselective Synthesis of Sialyl Lewis Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine.
Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202309744. doi: 10.1002/anie.202309744. Epub 2023 Oct 16.
7
Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles.
Bioconjug Chem. 2024 Feb 21;35(2):164-173. doi: 10.1021/acs.bioconjchem.3c00415. Epub 2023 Dec 19.
8
Protective Epitope Discovery and Design of MUC1-based Vaccine for Effective Tumor Protections in Immunotolerant Mice.
J Am Chem Soc. 2018 Dec 5;140(48):16596-16609. doi: 10.1021/jacs.8b08473. Epub 2018 Nov 19.

引用本文的文献

1
A self-adjuvanted VLPs-based Covid-19 vaccine proven versatile, safe, and highly protective.
Sci Rep. 2024 Oct 16;14(1):24228. doi: 10.1038/s41598-024-76163-w.
3
Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform.
Annu Rev Virol. 2024 Sep;11(1):395-420. doi: 10.1146/annurev-virology-111821-111145. Epub 2024 Aug 30.
6
Bacteriophages and their unique components provide limitless resources for exploitation.
Front Microbiol. 2024 Feb 6;15:1342544. doi: 10.3389/fmicb.2024.1342544. eCollection 2024.
7
Development of NHAcGD2/NHAcGD3 conjugates of bacteriophage MX1 virus-like particles as anticancer vaccines.
RSC Adv. 2024 Feb 19;14(9):6246-6252. doi: 10.1039/d3ra08923a. eCollection 2024 Feb 14.
8
Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies.
Vaccines (Basel). 2023 Dec 29;12(1):38. doi: 10.3390/vaccines12010038.
9
Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles.
Bioconjug Chem. 2024 Feb 21;35(2):164-173. doi: 10.1021/acs.bioconjchem.3c00415. Epub 2023 Dec 19.
10
Stereoselective Synthesis of Sialyl Lewis Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine.
Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202309744. doi: 10.1002/anie.202309744. Epub 2023 Oct 16.

本文引用的文献

1
A Stable Gold Nanoparticle-Based Vaccine for the Targeted Delivery of Tumor-Associated Glycopeptide Antigens.
ACS Bio Med Chem Au. 2021 Dec 15;1(1):31-43. doi: 10.1021/acsbiomedchemau.1c00021. Epub 2021 Sep 10.
2
Chemoenzymatic Synthesis of 9NHAc-GD2 Antigen to Overcome the Hydrolytic Instability of O-Acetylated-GD2 for Anticancer Conjugate Vaccine Development.
Angew Chem Int Ed Engl. 2021 Nov 2;60(45):24179-24188. doi: 10.1002/anie.202108610. Epub 2021 Oct 4.
3
Synthesis and immunological evaluation of -acyl modified Globo H derivatives as anticancer vaccine candidates.
RSC Med Chem. 2021 May 19;12(7):1239-1243. doi: 10.1039/d1md00067e. eCollection 2021 Jul 21.
4
Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization.
Nature. 2021 Aug;596(7871):276-280. doi: 10.1038/s41586-021-03777-9. Epub 2021 Jul 8.
5
SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies.
ACS Chem Biol. 2021 Jul 16;16(7):1223-1233. doi: 10.1021/acschembio.1c00272. Epub 2021 Jul 4.
6
Chemical synthesis and immunological evaluation of entirely carbohydrate conjugate Globo H-PS A1.
Chem Sci. 2020 Oct 19;11(48):13052-13059. doi: 10.1039/d0sc04595k.
7
Synthesis and immunological evaluation of synthetic peptide based anti-SARS-CoV-2 vaccine candidates.
Chem Commun (Camb). 2021 Feb 15;57(12):1474-1477. doi: 10.1039/d0cc08265a.
9
Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy.
J Immunol Res. 2020 Nov 17;2020:5825401. doi: 10.1155/2020/5825401. eCollection 2020.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验