Jia Xiaoxuan, Siegle Joshua H, Durand Séverine, Heller Greggory, Ramirez Tamina K, Koch Christof, Olsen Shawn R
Allen Institute, Seattle, WA 98109, USA.
Allen Institute, Seattle, WA 98109, USA.
Neuron. 2022 May 4;110(9):1585-1598.e9. doi: 10.1016/j.neuron.2022.01.027. Epub 2022 Feb 9.
The visual cortex is hierarchically organized, yet the presence of extensive recurrent and parallel pathways make it challenging to decipher how signals flow between neuronal populations. Here, we tracked the flow of spiking activity recorded from six interconnected levels of the mouse visual hierarchy. By analyzing leading and lagging spike-timing relationships among pairs of simultaneously recorded neurons, we created a cellular-scale directed network graph. Using a module-detection algorithm to cluster neurons based on shared connectivity patterns, we uncovered two multi-regional communication modules distributed across the hierarchy. The direction of signal flow both between and within these modules, differences in layer and area distributions, and distinct temporal dynamics suggest that one module transmits feedforward sensory signals, whereas the other integrates inputs for recurrent processing. These results suggest that multi-regional functional modules may be a fundamental feature of organization beyond cortical areas that supports signal propagation across hierarchical recurrent networks.
视觉皮层是分层组织的,然而广泛存在的循环和并行通路使得解读神经元群体之间的信号流动变得具有挑战性。在这里,我们追踪了从小鼠视觉层级结构的六个相互连接层次记录到的尖峰活动流。通过分析同时记录的神经元对之间的领先和滞后尖峰时间关系,我们创建了一个细胞尺度的有向网络图。使用模块检测算法根据共享的连接模式对神经元进行聚类,我们发现了分布在整个层级结构中的两个多区域通信模块。这些模块之间以及模块内部的信号流动方向、层和区域分布的差异以及独特的时间动态表明,一个模块传输前馈感觉信号,而另一个模块整合输入以进行循环处理。这些结果表明,多区域功能模块可能是超越皮层区域的组织的一个基本特征,支持跨层级循环网络的信号传播。