Suppr超能文献

并非每个样本都有效:用于非配对图像到图像翻译的类比生成对抗网络。

Not every sample is efficient: Analogical generative adversarial network for unpaired image-to-image translation.

机构信息

Ocean University of China/ Sanya Oceanographic Institution, Ocean University of China, No. 238, Songling Road, Qingdao/Sanya, Shandong/Hainan, China.

University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

出版信息

Neural Netw. 2022 Apr;148:166-175. doi: 10.1016/j.neunet.2022.01.013. Epub 2022 Jan 29.

Abstract

Image translation is to learn an effective mapping function that aims to convert an image from a source domain to another target domain. With the proposal and further developments of generative adversarial networks (GANs), the generative models have achieved great breakthroughs. The image-to-image (I2I) translation methods can mainly fall into two categories: Paired and Unpaired. The former paired methods usually require a large amount of input-output sample pairs to perform one-side image translation, which heavily limits its practicability. To address the lack of the paired samples, CycleGAN and its extensions utilize the cycle-consistency loss to provide an elegant and generic solution to perform the unpaired I2I translation between two domains based on unpaired data. This thread of dual learning-based methods usually adopts the random sampling strategy for optimizing and does not consider the content similarity between samples. However, not every sample is efficient and effective for the desired optimization and leads to optimal convergence. Inspired by analogical learning, which is to utilize the relationships and similarities between sample observations, we propose a novel generic metric-based sampling strategy to effectively select samples from different domains for training. Besides, we introduce a novel analogical adversarial loss to force the model to learn from the effective samples and alleviate the influence of the negative samples. Experimental results on various vision tasks have demonstrated the superior performance of the proposed method. The proposed method is also a generic framework that can be easily extended to other I2I translation methods and result in a performance gain.

摘要

图像翻译旨在学习有效的映射函数,旨在将图像从源域转换到目标域。随着生成对抗网络(GANs)的提出和进一步发展,生成模型取得了重大突破。图像到图像(I2I)翻译方法主要可分为两类:配对和非配对。前者通常需要大量的输入-输出样本对来执行单边图像翻译,这严重限制了其实用性。为了解决配对样本的缺乏问题,CycleGAN 及其扩展利用循环一致性损失为在两个域之间基于未配对数据执行未配对 I2I 翻译提供了一种优雅而通用的解决方案。基于对偶学习的这种方法通常采用随机采样策略进行优化,并且不考虑样本之间的内容相似性。然而,并非每个样本对于期望的优化都是有效和有效的,并且导致最佳收敛。受类比学习的启发,类比学习是利用样本观察之间的关系和相似性,我们提出了一种新颖的基于通用度量的采样策略,以有效地从不同域中选择样本进行训练。此外,我们引入了新颖的类比对抗损失,迫使模型从有效样本中学习,并减轻负样本的影响。在各种视觉任务上的实验结果表明了所提出方法的优越性能。所提出的方法也是一个通用框架,可以轻松扩展到其他 I2I 翻译方法,并带来性能提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验