Suppr超能文献

用于不平衡跨物种图像到图像翻译的带有多分支鉴别器的生成对抗网络

Generative Adversarial Network with Multi-branch Discriminator for imbalanced cross-species image-to-image translation.

作者信息

Zheng Ziqiang, Yu Zhibin, Wu Yang, Zheng Haiyong, Zheng Bing, Lee Minho

机构信息

College of Information Science and Engineering / Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China.

Kyoto University, Kyoto, Japan.

出版信息

Neural Netw. 2021 Sep;141:355-371. doi: 10.1016/j.neunet.2021.04.013. Epub 2021 Apr 24.

Abstract

There has been an increased interest in high-level image-to-image translation to achieve semantic matching. Through a powerful translation model, we can efficiently synthesize high-quality images with diverse appearances while retaining semantic matching. In this paper, we address an imbalanced learning problem using a cross-species image-to-image translation. We aim to perform the data augmentation through the image translation to boost the recognition performance of imbalanced learning. It requires a strong ability of the model to perform a biomorphic transformation on a semantic level. To tackle this problem, we propose a novel, simple, and effective structure of Multi-Branch Discriminator (termed as MBD) based on Generative Adversarial Networks (GANs). We demonstrate the effectiveness of the proposed MBD through theoretical analysis as well as empirical evaluation. We provide theoretical proof of why the proposed MBD is an effective and optimal case to achieve remarkable performance. Comprehensive experiments on various cross-species image translation tasks illustrate that our MBD can dramatically promote the performance of popular GANs with state-of-the-art results in terms of both objective and subjective assessments. Extensive downstream image recognition evaluations at a few-shot setting have also been conducted to demonstrate that the proposed method can effectively boost the performance of imbalanced learning.

摘要

为实现语义匹配,人们对高级图像到图像的翻译越来越感兴趣。通过强大的翻译模型,我们可以高效地合成具有多样外观的高质量图像,同时保持语义匹配。在本文中,我们使用跨物种图像到图像的翻译来解决不平衡学习问题。我们旨在通过图像翻译进行数据增强,以提高不平衡学习的识别性能。这需要模型具备在语义层面进行生物形态转换的强大能力。为解决这个问题,我们基于生成对抗网络(GAN)提出了一种新颖、简单且有效的多分支判别器结构(称为MBD)。我们通过理论分析和实证评估证明了所提出的MBD的有效性。我们提供了理论证明,说明为什么所提出的MBD是实现卓越性能的有效且最优的情况。在各种跨物种图像翻译任务上的综合实验表明,我们的MBD可以显著提升流行GAN的性能,在客观和主观评估方面都取得了领先的结果。我们还在少样本设置下进行了广泛的下游图像识别评估,以证明所提出的方法可以有效地提高不平衡学习的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验