Elsemman Ibrahim E, Rodriguez Prado Angelica, Grigaitis Pranas, Garcia Albornoz Manuel, Harman Victoria, Holman Stephen W, van Heerden Johan, Bruggeman Frank J, Bisschops Mark M M, Sonnenschein Nikolaus, Hubbard Simon, Beynon Rob, Daran-Lapujade Pascale, Nielsen Jens, Teusink Bas
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark.
Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, Egypt.
Nat Commun. 2022 Feb 10;13(1):801. doi: 10.1038/s41467-022-28467-6.
When conditions change, unicellular organisms rewire their metabolism to sustain cell maintenance and cellular growth. Such rewiring may be understood as resource re-allocation under cellular constraints. Eukaryal cells contain metabolically active organelles such as mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular constraints remain to be determined for such cells. Here, we present a comprehensive metabolic model of the yeast cell, based on its full metabolic reaction network extended with protein synthesis and degradation reactions. The model predicts metabolic fluxes and corresponding protein expression by constraining compartment-specific protein pools and maximising growth rate. Comparing model predictions with quantitative experimental data suggests that under glucose limitation, a mitochondrial constraint limits growth at the onset of ethanol formation-known as the Crabtree effect. Under sugar excess, however, a constraint on total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimisation, providing a framework to understand metabolic adaptation in eukaryal cells.
当条件发生变化时,单细胞生物会重新调整其新陈代谢,以维持细胞维持和细胞生长。这种重新调整可被理解为细胞限制下的资源重新分配。真核细胞含有线粒体等代谢活跃的细胞器,它们会争夺细胞质空间和资源,而此类细胞中相关细胞限制的性质仍有待确定。在此,我们基于扩展了蛋白质合成和降解反应的完整代谢反应网络,提出了酵母细胞的综合代谢模型。该模型通过限制特定区室的蛋白质库并最大化生长速率来预测代谢通量和相应的蛋白质表达。将模型预测与定量实验数据进行比较表明,在葡萄糖限制条件下,线粒体限制在乙醇形成开始时限制生长,这就是所谓的巴斯德效应。然而,在糖分过量的情况下,对细胞质总体积的限制决定了溢流代谢。因此,我们的综合模型确定了依赖于条件和特定区室的限制,这些限制可以通过生长速率优化来解释代谢策略和蛋白质表达谱,为理解真核细胞中的代谢适应提供了一个框架。