Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7524-7535. doi: 10.1073/pnas.1918216117. Epub 2020 Mar 17.
constitutes a popular eukaryal model for research on mitochondrial physiology. Being Crabtree-positive, this yeast has evolved the ability to ferment glucose to ethanol and respire ethanol once glucose is consumed. Its transition phase from fermentative to respiratory metabolism, known as the diauxic shift, is reflected by dramatic rearrangements of mitochondrial function and structure. To date, the metabolic adaptations that occur during the diauxic shift have not been fully characterized at the organelle level. In this study, the absolute proteome of mitochondria was quantified alongside precise parametrization of biophysical properties associated with the mitochondrial network using state-of-the-art optical-imaging techniques. This allowed the determination of absolute protein abundances at a subcellular level. By tracking the transformation of mitochondrial mass and volume, alongside changes in the absolute mitochondrial proteome allocation, we could quantify how mitochondria balance their dual role as a biosynthetic hub as well as a center for cellular respiration. Furthermore, our findings suggest that in the transition from a fermentative to a respiratory metabolism, the diauxic shift represents the stage where major structural and functional reorganizations in mitochondrial metabolism occur. This metabolic transition, initiated at the mitochondria level, is then extended to the rest of the yeast cell.
它是一种流行的真核生物模型,可用于研究线粒体生理学。该酵母为 Crabtree 阳性,能够发酵葡萄糖产生乙醇,并在消耗完葡萄糖后进行乙醇呼吸。其从发酵到呼吸代谢的转变阶段,即所谓的双相转换,反映了线粒体功能和结构的剧烈重排。迄今为止,双相转换过程中发生的代谢适应在细胞器水平上尚未得到充分表征。在这项研究中,使用最先进的光学成像技术,对线粒体的绝对蛋白质组进行了定量,并对与线粒体网络相关的生物物理特性进行了精确参数化。这使得能够在亚细胞水平上确定绝对蛋白质丰度。通过跟踪线粒体质量和体积的变化,以及绝对线粒体蛋白质组分配的变化,我们可以量化线粒体如何平衡其作为生物合成中心以及细胞呼吸中心的双重作用。此外,我们的研究结果表明,在从发酵到呼吸代谢的转变过程中,双相转换代表了线粒体代谢发生重大结构和功能重组的阶段。这种代谢转变始于线粒体水平,然后扩展到酵母细胞的其余部分。