Suppr超能文献

热力学有助于提高蓝藻中柠檬烯的产量。

Thermodynamics contributes to high limonene productivity in cyanobacteria.

作者信息

Shinde Shrameeta, Singapuri Sonali, Jiang Zhenxiong, Long Bin, Wilcox Danielle, Klatt Camille, Jones J Andrew, Yuan Joshua S, Wang Xin

机构信息

Department of Microbiology, Miami University, Oxford, OH, 45056, USA.

Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.

出版信息

Metab Eng Commun. 2022 Jan 22;14:e00193. doi: 10.1016/j.mec.2022.e00193. eCollection 2022 Jun.

Abstract

Terpenoids are a large group of secondary metabolites with broad industrial applications. Engineering cyanobacteria is an attractive route for the sustainable production of commodity terpenoids. Currently, a major obstacle lies in the low productivity attained in engineered cyanobacterial strains. Traditional metabolic engineering to improve pathway kinetics has led to limited success in enhancing terpenoid productivity. In this study, we reveal thermodynamics as the main determinant for high limonene productivity in cyanobacteria. Through overexpressing the primary sigma factor, a higher photosynthetic rate was achieved in an engineered strain of S PCC 7942. Computational modeling and wet lab analyses showed an increased flux toward both native carbon sink glycogen synthesis and the non-native limonene synthesis from photosynthate output. On the other hand, comparative proteomics showed decreased expression of terpene pathway enzymes, revealing their limited role in determining terpene flux. Lastly, growth optimization by enhancing photosynthesis has led to a limonene titer of 19 mg/L in 7 days with a maximum productivity of 4.3 mg/L/day. This study highlights the importance of enhancing photosynthesis and substrate input for the high productivity of secondary metabolic pathways, providing a new strategy for future terpenoid engineering in phototrophs.

摘要

萜类化合物是一类具有广泛工业应用的次生代谢产物。工程改造蓝细菌是可持续生产商品萜类化合物的一条有吸引力的途径。目前,一个主要障碍在于工程蓝细菌菌株中获得的低生产率。传统的代谢工程来改善途径动力学在提高萜类化合物生产率方面取得的成功有限。在这项研究中,我们揭示了热力学是蓝细菌中柠檬烯高生产率的主要决定因素。通过过表达主要的σ因子,在工程改造的集胞藻PCC 7942菌株中实现了更高的光合速率。计算建模和湿实验室分析表明,从光合产物输出到天然碳汇糖原合成和非天然柠檬烯合成的通量都增加了。另一方面,比较蛋白质组学表明萜类途径酶的表达降低,揭示了它们在确定萜类通量方面的有限作用。最后,通过增强光合作用进行生长优化,在7天内柠檬烯产量达到19毫克/升,最大生产率为4.3毫克/升/天。这项研究强调了增强光合作用和底物输入对次生代谢途径高生产率的重要性,为未来光合生物中萜类化合物工程提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7624/8801761/25cdc8003d6c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验