Suppr超能文献

鉴定常染色体显性疾病驱动基因的患者并评估变异致病性。

Identifying patients and assessing variant pathogenicity for an autosomal dominant disease-driving gene.

机构信息

Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.

Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA.

出版信息

STAR Protoc. 2022 Feb 2;3(1):101150. doi: 10.1016/j.xpro.2022.101150. eCollection 2022 Mar 18.

Abstract

Identifying a disease gene and determining its causality in patients can be challenging. Here, we present an approach to predicting the pathogenicity of deletions and missense variants for an autosomal dominant gene. We provide online resources for identifying patients and determining constraint metrics to isolate the causal gene among several candidates encompassed in a shared region of deletion. We also provide instructions for optimizing functional annotation programs that may be otherwise inaccessible to a nonexpert or novice in computational approaches. For complete details on the use and execution of this protocol, please refer to Gennarino et al. (2018).

摘要

鉴定疾病基因及其在患者中的因果关系具有挑战性。在这里,我们提出了一种预测常染色体显性基因缺失和错义变异致病性的方法。我们提供了在线资源,用于鉴定患者并确定约束度量,以在共享缺失区域中包含的多个候选基因中分离出因果基因。我们还提供了有关优化功能注释程序的说明,否则非专业人士或计算方法新手可能无法访问这些程序。有关使用和执行此方案的完整详细信息,请参阅 Gennarino 等人。(2018)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c34b/8819039/e7965c7c8d30/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验