Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA.
STAR Protoc. 2022 Feb 2;3(1):101150. doi: 10.1016/j.xpro.2022.101150. eCollection 2022 Mar 18.
Identifying a disease gene and determining its causality in patients can be challenging. Here, we present an approach to predicting the pathogenicity of deletions and missense variants for an autosomal dominant gene. We provide online resources for identifying patients and determining constraint metrics to isolate the causal gene among several candidates encompassed in a shared region of deletion. We also provide instructions for optimizing functional annotation programs that may be otherwise inaccessible to a nonexpert or novice in computational approaches. For complete details on the use and execution of this protocol, please refer to Gennarino et al. (2018).
鉴定疾病基因及其在患者中的因果关系具有挑战性。在这里,我们提出了一种预测常染色体显性基因缺失和错义变异致病性的方法。我们提供了在线资源,用于鉴定患者并确定约束度量,以在共享缺失区域中包含的多个候选基因中分离出因果基因。我们还提供了有关优化功能注释程序的说明,否则非专业人士或计算方法新手可能无法访问这些程序。有关使用和执行此方案的完整详细信息,请参阅 Gennarino 等人。(2018)。