Peterson Ebba K, Sondreli Kelsey Liann, Reeser Paul, Navarro Sarah M, Nichols Casara, Wiese Randall, Fieland Valerie, Grünwald Niklaus J, LeBoldus Jared M
Oregon State University, 2694, Botany and Plant Pathology, Corvallis, Oregon, United States;
Oregon State University, 2694, Botany & Plant Pathology, Corvallis, Oregon, United States;
Plant Dis. 2022 Feb 11. doi: 10.1094/PDIS-10-21-2152-PDN.
Werres, de Cock & Man in't Veld, causal agent of sudden oak death (SOD) and ramorum leaf blight, is comprised of four clonal lineages in its invasive ranges of North America and Europe (Grünwald et al. 2012, Van Poucke et al. 2012). Of these, three - the NA1, NA2, and EU1 lineages - are found in U.S. nurseries, but only two, the NA1 and EU1 lineages, have been found infecting trees in North American forests (Grünwald et al. 2012, 2016). In the spring of 2021, tanoak ( Manos, Cannon & Oh) displaying symptoms consistent with SOD were detected north of Port Orford (Curry County, Oregon). Symptoms were canopy dieback and blackened petiole and stem lesions on tanoak sprouts. The pathogen isolated on PAR (CMA plus 200 ml/L ampicillin, 10 mg/L rifamycin, 66.7 mg/L PCNB) selective media was determined to be based on characteristic morphology of hyphae, sporangia, and chlamydospores (Werres et al. 2001). Positive identification as was obtained with a lineage-specific LAMP assay targeting an NA2 orphan gene, indicating the presence of the NA2 lineage. NA2 was confirmed by sequencing a portion of the cellulose binding elicitor lectin (CBEL) gene using CBEL5U and CBEL6L primers (Gagnon et al. 2014). Sequences (GenBank accessions MZ733981 and MZ733982) were aligned against reference sequences for all lineages (Gagnon et al. 2014) confirming the presence of NA2. Lineage determination as NA2 was further confirmed at eleven SSR loci (ILVOPrMS145, PrMS39, PrMS9C3, ILVOPrMS79, KI18, KI64, PrMS45, PrMS6, ILVOPrMS131, KI82ab, and PrMS43) using the methods of Kamvar et al. (2015). We completed Koch's postulates using potted tanoaks, wound-inoculated at the midpoint of 1-year old stems with either hyphal plugs or non-colonized agar (n=4 per treatment). Tanoaks were maintained in a growth chamber (20°C-day / 18°C-night temperatures) with regular watering and an 18-photoperiod using F32T8 fluorescent bulbs (Phillips, Eindhoven, The Netherlands). After 7 days, brown to black lesions 1.2 to 2.9 cm in length were observed on the inoculated stems, from which was subsequently re-isolated; no symptoms were observed on the controls, and no pathogens were recovered when plating the wound sites in PAR. This is the first detection of the NA2 lineage causing disease in forests worldwide. The outbreak was found on private and public lands in forests typical to the SOD outbreak in Oregon (mixed conifer and tanoak), and was 33 km north of the closest known infestation. Follow-up ground surveys on adjacent lands have identified over 100 -positive tanoak trees, from which additional NA2 isolates have been recovered from bole cankers. NA2 is thought to be more aggressive than the NA1 lineage (Elliott et al. 2011), which has been present in Curry County since the mid-1990s (Goheen et al. 2017). Eradication of the NA2 lineage is being pursued to slow its further spread and prevent overlap with existing NA1 and EU1 populations. The repeated introductions of novel lineages into the western United States native plant communities highlights the vulnerability of this region to establishment, justifying continued monitoring for in nurseries and forests. References • Elliott, M, et al. 2011. For. Path. 41:7. https://doi.org/10.1111/j.1439-0329.2009.00627.x • Gagnon, M.-C., et al. 2014. Can. J. Plant Pathol. 36:367. https://doi.org/10.1080/07060661.2014.924999 • Goheen, E.M., et al. 2017. For. Phytophthoras 7:45. https://doi: 10.5399/osu/fp.7.1.4030 • Grünwald, N. J., et al. 2012. Trends Microbiol. 20:131. https://doi.org/10.1016/j.tim.2011.12.006 • Grünwald, N. J., et al. 2016. Plant Dis. 100:1024. https://doi.org/10.1094/PDIS-10-15-1169-PDN • Kamvar, Z.N. et al. 2015. Phytopath. 105:982. https://doi.org/10.1094/PHYTO-12-14-0350-FI • Van Poucke, K., et al. 2012. Fungal Biol. 116:1178. https://doi.org/10.1016/j.funbio.2012.09.003 • Werres, S., et al. 2001. Mycol. Res. 105: 1155. https://doi.org/10.1016/S0953-7562(08)61986-3.
栎树猝死病菌(SOD)和叶疫病的致病因子韦氏疫霉、德科克疫霉和曼氏疫霉,在其北美和欧洲的入侵范围内由四个克隆谱系组成(格林瓦尔德等人,2012年;范·普克等人,2012年)。其中,三个谱系——NA1、NA2和EU1——在美国苗圃中被发现,但只有两个谱系,即NA1和EU1谱系,被发现感染北美森林中的树木(格林瓦尔德等人,2012年、2016年)。2021年春天,在俄勒冈州奥福德港以北(库里县)检测到了与栎树猝死病症状相符的鞣皮栎(马诺斯、坎农和奥赫)。症状表现为树冠枯萎以及鞣皮栎嫩枝上的叶柄和茎部变黑病变。在PAR(CMA加200毫升/升氨苄青霉素、10毫克/升利福霉素、66.7毫克/升五氯硝基苯)选择性培养基上分离出的病原体,根据菌丝、孢子囊和厚垣孢子的特征形态被确定为[病原体名称未给出](韦雷斯等人,2001年)。通过针对NA2孤儿基因的谱系特异性环介导等温扩增(LAMP)检测,得到了[病原体名称未给出]的阳性鉴定结果,表明存在NA2谱系。使用CBEL5U和CBEL6L引物对纤维素结合激发子凝集素(CBEL)基因的一部分进行测序,证实了NA2(加尼翁等人,2014年)。序列(GenBank登录号MZ733981和MZ733982)与所有谱系的参考序列进行比对(加尼翁等人,2014年),确认了NA2的存在。使用卡姆瓦尔等人(2015年)的方法,在11个简单序列重复(SSR)位点(ILVOPrMS145、PrMS39、PrMS9C3、ILVOPrMS79、KI18、KI64、PrMS45、PrMS6、ILVOPrMS131、KI82ab和PrMS43)进一步确认了NA2谱系的判定。我们使用盆栽鞣皮栎完成了柯赫氏法则验证,在1年生茎的中点用菌丝块或未定植的琼脂进行伤口接种(每个处理n = 4)。将鞣皮栎置于生长室(白天20°C / 夜间18°C温度),定期浇水,并使用F32T8荧光灯泡(飞利浦,荷兰埃因霍温)维持18小时的光周期。7天后,在接种的茎上观察到长度为1.2至2.9厘米的褐色至黑色病变,随后从中重新分离出了[病原体名称未给出];对照未观察到症状,在PAR培养基上对接种部位进行平板培养时未回收病原体。这是首次在全球森林中检测到NA2谱系引发病害。此次疫情在俄勒冈州典型的栎树猝死病爆发森林(针叶树和鞣皮栎混交林)的私有和公共土地上被发现,距离最近已知的[病原体名称未给出]侵染地以北33公里。对相邻土地的后续地面调查发现了100多棵感染[病原体名称未给出]的鞣皮栎树,从树干溃疡处又分离出了其他NA2分离株。NA2被认为比NA1谱系更具侵略性(埃利奥特等人,2011年),自20世纪90年代中期以来NA1谱系就已存在于库里县(戈heen等人,2017年)。目前正在努力根除NA2谱系,以减缓其进一步传播,并防止与现有的NA1和EU1种群重叠。新谱系不断引入美国西部本土植物群落,凸显了该地区对[病原体名称未给出]定殖的脆弱性,这证明有必要持续监测苗圃和森林中的[病原体名称未给出]。参考文献 • 埃利奥特,M等人。2011年。《森林病理学》41:7。https://doi.org/10.1111/j.1439-0329.2009.00627.x • 加尼翁,M.-C.等人。2014年。《加拿大植物病理学杂志》36:367。https://doi.org/10.1080/07060661.2014.924999 • 戈heen,E.M.等人。2017年。《疫霉属研究》7:45。https://doi: 10.5399/osu/fp.7.1.4030 • 格林瓦尔德,N.J.等人。2012年。《微生物学趋势》20:131。https://doi.org/10.1016/j.tim.2011.12.006 • 格林瓦尔德,N.J.等人。2016年。《植物病害》100:1024。https://doi.org/10.1094/PDIS-10-15-1169-PDN • 卡姆瓦尔,Z.N.等人。2015年。《植物病理学》105:982。https://doi.org/10.1094/PHYTO-12-14-0350-FI • 范·普克,K.等人。2012年。《真菌生物学》116:1178。https://doi.org/10.1016/j.funbio.2012.09.003 • 韦雷斯,S.等人。2001年。《真菌研究》105: 1155。https://doi.org/10.1016/S0953-7562(08)61986-3