Suppr超能文献

中等压力下具有氢基合金骨架的高温超导体的设计原则

Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure.

作者信息

Zhang Zihan, Cui Tian, Hutcheon Michael J, Shipley Alice M, Song Hao, Du Mingyang, Kresin Vladimir Z, Duan Defang, Pickard Chris J, Yao Yansun

机构信息

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

出版信息

Phys Rev Lett. 2022 Jan 28;128(4):047001. doi: 10.1103/PhysRevLett.128.047001.

Abstract

Hydrogen-based superconductors provide a route to the long-sought goal of room-temperature superconductivity, but the high pressures required to metallize these materials limit their immediate application. For example, carbonaceous sulfur hydride, the first room-temperature superconductor made in a laboratory, can reach a critical temperature (T_{c}) of 288 K only at the extreme pressure of 267 GPa. The next recognized challenge is the realization of room-temperature superconductivity at significantly lower pressures. Here, we propose a strategy for the rational design of high-temperature superconductors at low pressures by alloying small-radius elements and hydrogen to form ternary H-based superconductors with alloy backbones. We identify a "fluorite-type" backbone in compositions of the form AXH_{8}, which exhibit high-temperature superconductivity at moderate pressures compared with other reported hydrogen-based superconductors. The Fm3[over ¯]m phase of LaBeH_{8}, with a fluorite-type H-Be alloy backbone, is predicted to be thermodynamically stable above 98 GPa, and dynamically stable down to 20 GPa with a high T_{c}∼185  K. This is substantially lower than the synthesis pressure required by the geometrically similar clathrate hydride LaH_{10} (170 GPa). Our approach paves the way for finding high-T_{c} ternary H-based superconductors at conditions close to ambient pressures.

摘要

基于氢的超导体为实现人们长期追求的室温超导目标提供了一条途径,但使这些材料金属化所需的高压限制了它们的直接应用。例如,实验室制造的首个室温超导体——碳质硫化氢,仅在267吉帕的极端压力下才能达到288开尔文的临界温度(Tc)。下一个公认的挑战是在显著更低的压力下实现室温超导。在此,我们提出一种策略,通过将小半径元素与氢合金化,形成具有合金骨架的三元H基超导体,以在低压下合理设计高温超导体。我们在AXH8形式的成分中识别出一种“萤石型”骨架,与其他已报道的氢基超导体相比,它们在中等压力下表现出高温超导性。具有萤石型H-Be合金骨架的LaBeH8的Fm3[上划线]m相预计在98吉帕以上热力学稳定,在20吉帕以下动态稳定,临界温度Tc约为185开尔文。这大大低于几何结构相似的笼形氢化物LaH10所需的合成压力(170吉帕)。我们的方法为在接近环境压力的条件下寻找高Tc三元H基超导体铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验