Dolui Kapildeb, Conway Lewis J, Heil Christoph, Strobel Timothy A, Prasankumar Rohit P, Pickard Chris J
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB30FS, United Kingdom.
Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
Phys Rev Lett. 2024 Apr 19;132(16):166001. doi: 10.1103/PhysRevLett.132.166001.
A key challenge in materials discovery is to find high-temperature superconductors. Hydrogen and hydride materials have long been considered promising materials displaying conventional phonon-mediated superconductivity. However, the high pressures required to stabilize these materials have restricted their application. Here, we present results from high-throughput computation, considering a wide range of high-symmetry ternary hydrides from across the periodic table at ambient pressure. This large composition space is then reduced by considering thermodynamic, dynamic, and magnetic stability before direct estimations of the superconducting critical temperature. This approach has revealed a metastable ambient-pressure hydride superconductor, Mg_{2}IrH_{6}, with a predicted critical temperature of 160 K, comparable to the highest temperature superconducting cuprates. We propose a synthesis route via a structurally related insulator, Mg_{2}IrH_{7}, which is thermodynamically stable above 15 GPa, and discuss the potential challenges in doing so.
材料发现中的一个关键挑战是寻找高温超导体。氢和氢化物材料长期以来一直被认为是显示传统声子介导超导性的有前景的材料。然而,稳定这些材料所需的高压限制了它们的应用。在此,我们展示了高通量计算的结果,考虑了在常压下来自整个周期表的各种高对称性三元氢化物。在直接估计超导临界温度之前,通过考虑热力学、动力学和磁稳定性来缩小这个大的成分空间。这种方法揭示了一种亚稳的常压氢化物超导体Mg₂IrH₆,其预测临界温度为160 K,与最高温度的超导铜酸盐相当。我们提出了一条通过结构相关的绝缘体Mg₂IrH₇的合成路线,Mg₂IrH₇在15 GPa以上是热力学稳定的,并讨论了这样做可能面临的挑战。