Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
GlaxoSmithKline R&D, Stevenage, UK.
Stem Cell Reports. 2022 Mar 8;17(3):556-568. doi: 10.1016/j.stemcr.2022.01.009. Epub 2022 Feb 10.
Human induced pluripotent stem cell-derived cardiomyocytes have been established to detect dynamic calcium transients by fast kinetic fluorescence assays that provide insights into specific aspects of clinical cardiac activity. However, the precise derivation and use of waveform parameters to predict cardiac activity merit deeper investigation. In this study, we derived, evaluated, and applied 38 waveform parameters in a novel Python framework, including (among others) peak frequency, peak amplitude, peak widths, and a novel parameter, shoulder-tail ratio. We then trained a random forest model to predict cardiac activity based on the 25 parameters selected by correlation analysis. The area under the curve (AUC) obtained for leave-one-compound-out cross-validation was 0.86, thereby replicating the predictions of conventional methods and outperforming fingerprint-based methods by a large margin. This work demonstrates that machine learning is able to automate the assessment of cardiovascular liability from waveform data, reducing any risk of user-to-user variability and bias.
人诱导多能干细胞衍生的心肌细胞已被建立起来,通过快速动力学荧光测定法检测动态钙瞬变,从而深入了解临床心脏活动的特定方面。然而,波形参数的确切推导和使用以预测心脏活动值得更深入的研究。在这项研究中,我们在一个新的 Python 框架中推导、评估和应用了 38 个波形参数,包括(除其他外)峰频率、峰幅度、峰宽度和一个新的参数,肩尾比。然后,我们基于相关性分析选择的 25 个参数训练了一个随机森林模型来预测心脏活动。通过留一化合物外交叉验证获得的曲线下面积(AUC)为 0.86,从而复制了传统方法的预测,并大大优于基于指纹的方法。这项工作表明,机器学习能够从波形数据中自动评估心血管毒性,降低任何用户间变异性和偏差的风险。