Suppr超能文献

Regulation strategy for nutrient-dependent carbon and nitrogen stoichiometric homeostasis in freshwater phytoplankton.

作者信息

Li Wanzhu, Yang Meiling, Wang Baoli, Liu Cong-Qiang

机构信息

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.

出版信息

Sci Total Environ. 2022 Jun 1;823:153797. doi: 10.1016/j.scitotenv.2022.153797. Epub 2022 Feb 10.

Abstract

Phytoplankton carbon (C) and nitrogen (N) stoichiometric homeostasis plays an important role in aquatic ecosystems. Their C:N ratio is a result of cellular metabolic balance, and the relevant regulatory strategy for its plasticity is still unclear. Therefore, a field survey of seven reservoirs in Tianjin, North China, was conducted to understand variations in phytoplankton C:N ratios, and a laboratory culture of Chlamydomonas reinhardtii was performed to understand the relevant regulation strategy for cellular C-N stoichiometric homeostasis under different C and N availability by using transcriptome sequencing and Nano SIMS and C stable isotope analyses. The results indicated that CO limitation had no significant effect on the phytoplankton C:N ratio in either scene, whereas limitation of dissolved inorganic N induced a 35% higher ratio in the field and a 138% higher ratio in the laboratory. Under CO limitation, algal CO-concentrating mechanisms were operated to ensure a C supply, and coupled C-N molecular regulation remained the cellular C:N ratio stable. Under nitrate limitation, differentially expressed gene-regulated intensities increase enormously, and their increasing proportion was comparable to that of the algal C:N ratio; cellular metabolism was reorganized to form a "subhealthy" C-N stoichiometric state with high C:N ratios. In addition, the N transport system had a specific role under CO and nitrate limitations. Our study implies that algal stoichiometric homeostasis depends on the involved limitation element and will help to deepen the understanding of C-N stoichiometric homeostasis in freshwater phytoplankton.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验