Suppr超能文献

考察 COVID-19 大流行与加拿大四个省份的自残死亡人数之间的关联。

Examining the association between the COVID-19 pandemic and self-harm death counts in four Canadian provinces.

机构信息

School of Public Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo ON, Canada, N2L 3G1.

出版信息

Psychiatry Res. 2022 Apr;310:114433. doi: 10.1016/j.psychres.2022.114433. Epub 2022 Feb 5.

Abstract

Governments implemented lockdowns and other physical distancing measures to stop the spread of SARS-CoV-2 (COVID-19). Resulting unemployment, income loss, poverty, and social isolation, coupled with daily reports of dire news about the COVID-19 pandemic, could serve as catalysts for increased self-harm deaths (SHD). This ecological study examined whether observed SHD counts were higher than predicted SHD counts during the pandemic period in the Canadian provinces of Alberta, British Columbia, Ontario, and Québec. The study also explored whether SHD counts during the pandemic were affected by lockdown severity (measured using the lockdown stringency index [LSI]) and COVID-19 case numbers. We utilized publicly available SHD data from January 2018 through November 2020, and employed AutoRegressive Integrated Moving Average (ARIMA) modelling, to predict SHD during the COVID-19 period (March 21 to November 28, 2020). We used Poisson and negative binomial regression to assess ecological associations between the LSI and COVID-19 case numbers, controlling for seasonality, and SHD counts during the COVID-19 period. On average, observed SHD counts were lower than predicted counts during this period (p < 0.05 [except Alberta]). Additionally, LSI and COVID-19 case numbers were not statistically significantly associated with SHD counts.

摘要

各国政府实施了封锁和其他社交隔离措施,以阻止 SARS-CoV-2(COVID-19)的传播。由此导致的失业、收入损失、贫困和社会隔离,再加上每天都有关于 COVID-19 大流行的可怕消息,可能成为自我伤害死亡(SHD)人数增加的催化剂。这项生态研究考察了在加拿大艾伯塔省、不列颠哥伦比亚省、安大略省和魁北克省的大流行期间,观察到的 SHD 计数是否高于预测的 SHD 计数。该研究还探讨了大流行期间的 SHD 计数是否受到封锁严重程度(使用封锁严格指数 [LSI] 衡量)和 COVID-19 病例数的影响。我们利用 2018 年 1 月至 2020 年 11 月期间公开的 SHD 数据,采用自回归综合移动平均 (ARIMA) 模型,预测 COVID-19 期间(2020 年 3 月 21 日至 11 月 28 日)的 SHD。我们使用泊松和负二项回归来评估 LSI 和 COVID-19 病例数与 SHD 计数之间的生态关联,同时控制季节性和 COVID-19 期间的 SHD 计数。平均而言,在这段时间内观察到的 SHD 计数低于预测的计数(p<0.05[除了艾伯塔省])。此外,LSI 和 COVID-19 病例数与 SHD 计数之间没有统计学上的显著关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d667/8816901/8f6e04b9a3f7/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验