Mameli Marco, Paolanti Marina, Morbidoni Christian, Frontoni Emanuele, Teti Antonio
VRAI Vision Robotics and Artificial Intelligence Lab, Department of Information Engineering (DII), Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy.
University of Macerata , Macerata, Italy.
Soc Netw Anal Min. 2022;12(1):33. doi: 10.1007/s13278-021-00853-w. Epub 2022 Feb 7.
Social networks are increasingly used for discussing all kinds of topics, including those related to politics, serving as a virtual arena. Consequently, analysing online conversations, for example, to predict election outcomes, is becoming a popular and challenging research area. On social networking sites, citizens express themselves spontaneously regarding political topics, often driven by specific events in social life. Real-time analysis of social media can provide valuable feedback and insights to both politicians and news agencies. In this paper, we discuss the design and implementation of a system for tracking and analysing social media. The SocMINT system provides an easy-to-use, visual dashboard to monitor the discussion on specific topics, to capture trends in communities and, by iteratively applying multidimensional data analysis and filtering, to deeply analyse posts and influencers. SocMINT aggregates data from multiple social sources and performs sentiment analysis on textual, visual and mixed content via a specifically designed neural network architecture. The system was applied in a real context by administrative staff of a political party to effectively analyse candidates' political communication on Facebook, Instagram and Twitter and the related online community reactions and discussion. In the paper, we report on this real-world case study, showing how the system meaningfully captures trends in public opinion, comparing the main KPIs provided by SocMINT with the outcomes of traditional polls.
社交网络越来越多地被用于讨论各种话题,包括与政治相关的话题,成为一个虚拟的舞台。因此,分析在线对话,例如预测选举结果,正成为一个热门且具有挑战性的研究领域。在社交网站上,公民会自发地就政治话题表达自己的观点,这通常是由社会生活中的特定事件所驱动的。对社交媒体的实时分析可以为政治家和新闻机构提供有价值的反馈和见解。在本文中,我们讨论了一个用于跟踪和分析社交媒体的系统的设计与实现。SocMINT系统提供了一个易于使用的可视化仪表板,用于监控特定话题的讨论,捕捉社区中的趋势,并通过迭代应用多维数据分析和过滤,深入分析帖子和有影响力的人。SocMINT聚合来自多个社交来源的数据,并通过专门设计的神经网络架构对文本、视觉和混合内容进行情感分析。该系统由一个政党的行政人员在实际环境中应用,以有效分析候选人在Facebook、Instagram和Twitter上的政治沟通以及相关的在线社区反应和讨论。在本文中,我们报告了这个实际案例研究,展示了该系统如何有意义地捕捉公众舆论趋势,将SocMINT提供的主要关键绩效指标与传统民意调查的结果进行比较。