Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
Department of Pharmaceutical Sciences, Tshwane University of Technology, Arcadia Campus, Pretoria, South Africa.
Comb Chem High Throughput Screen. 2022;25(12):2059-2069. doi: 10.2174/1386207325666220214110717.
The monotropic membrane protein monoamine oxidase B (MAO-B) has been shown to be a crucial drug target for the treatment of neurodegenerative diseases. The design of recent inhibitor therapeutic agents of MAO-B involves conjugation and modification of a chalcone scaffold comprising two aryl or heteroaryl rings connected via a short spacer unit with rotatable bonds. Supported by experimental data, these modifications often result in high potent inhibitor compounds.
In this study, we employ molecular dynamics simulations to unravel the impact of extended double bond conjugation in two novel compounds, F1 and MO10, toward the inhibition of the MAO-B protein. It was revealed that extended double bond conjugation induced a unidirectional orientation and motion of F1 and MO10, suggesting a stable binding pocket anchorage favouring high-affinity pocket interactions.
Conformational analyses also revealed that the incorporated double bond extension impeded the motion of individual binding pocket residues, which subsequently disrupted the functionality of MAO-B.
Real-time structural dynamics also revealed that the extended double bond conjugation mediated peculiar interactions with MAO-B binding pocket residues characterized by π-alkyl, π-π stacking, and π-sulphur interactions which buried both compounds into the hydrophobic core of MAO-B and ultimately induced higher binding affinities of both F1 and MO10.
These insights present useful structural perspectives of the extended double bond conjugation associated with the experimentally reported enhanced inhibitory activity of F1 and MO10 against MAO-B.
单胺氧化酶 B(MAO-B)的单态膜蛋白已被证明是治疗神经退行性疾病的关键药物靶点。最近 MAO-B 的抑制剂治疗剂的设计涉及到包含两个芳基或杂芳基环的查尔酮支架的共轭和修饰,这些环通过带有旋转键的短间隔单元连接。实验数据表明,这些修饰通常会产生高效的抑制剂化合物。
在这项研究中,我们采用分子动力学模拟来揭示延长双键共轭对两种新型化合物 F1 和 MO10 对 MAO-B 蛋白抑制作用的影响。结果表明,延长双键共轭诱导了 F1 和 MO10 的单向取向和运动,表明稳定的结合口袋锚固有利于高亲和力口袋相互作用。
构象分析还表明,结合口袋中双键的扩展阻碍了单个结合口袋残基的运动,从而破坏了 MAO-B 的功能。
实时结构动力学还揭示了延长双键共轭介导的与 MAO-B 结合口袋残基的特殊相互作用,其特征为π-烷基、π-π堆积和π-硫相互作用,这两种化合物都被埋入 MAO-B 的疏水性核心,最终导致 F1 和 MO10 的结合亲和力更高。
这些见解提供了有关与 F1 和 MO10 对 MAO-B 的实验报道的增强抑制活性相关的延长双键共轭的有用结构观点。