Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.
Faraday Discuss. 2022 May 18;234(0):264-283. doi: 10.1039/d1fd00075f.
Transition metal ions have a unique ability to organise and control the steric and electronic effects around a substrate in the active site of a catalyst. We consider half-sandwich Ru(II) (Noyori-type) and Os(II) sulfonyldiamine 16-electron active catalysts [Ru/Os(η--cymene)(TsDPEN-H)], where TsDPEN is -tosyl-1,2-diphenylethylenediamine containing , or , chiral centres, which catalyse the highly efficient asymmetric transfer hydrogenation of aromatic ketones to chiral alcohols using formic acid as a hydride source. We discuss the recognition of the prochiral ketone acetophenone by the catalyst, the protonation of a ligand NH and transfer of hydride from formate to the metal, subsequent transfer of hydride to one enantiotopic face of the ketone, followed by proton transfer from metal-bound NH, and regeneration of the catalyst. Our DFT calculations illustrate the role of the two chiral carbons on the ,-chelated sulfonyldiamine ligand, the axial chirality of the π-bonded -cymene arene, and the chirality of the metal centre. We discuss new features of the mechanism, including how a change in metal chirality of the hydride intermediate dramatically switches -cymene coordination from η to η. Moreover, the calculations suggest a step-wise mechanism involving substrate docking to the bound amine NH followed by hydride transfer prior to protonation of the O-atom of acetophenone and release of the enantio-pure alcohol. This implies that formation and stability of the M-H hydride intermediate is highly dependent on the presence of the protonated amine ligand. The Os(II) catalyst is more stable than the Ru(II) analogue, and these studies illustrate the subtle differences in mechanistic behaviour between these 4d and 5d second-row and third-row transition metal congeners in group 8 of the periodic table.
过渡金属离子具有独特的能力,可以在催化剂的活性位点中组织和控制底物周围的空间和电子效应。我们考虑半夹心 Ru(II)(Noyori 型)和 Os(II) 磺酰二胺 16 电子活性催化剂 [Ru/Os(η--cymene)(TsDPEN-H)],其中 TsDPEN 是含有 或 手性中心的 -tosyl-1,2-二苯乙二胺,它可以使用甲酸作为氢化物源催化芳香酮的高效不对称转移氢化生成手性醇。我们讨论了前手性酮苯乙酮与催化剂的识别、配体 NH 的质子化以及氢化物从甲酸盐转移到金属、随后氢化物转移到手性酮的一个对映异位面、然后从金属结合的 NH 转移质子、以及催化剂的再生。我们的 DFT 计算说明了两个手性碳原子在 - 螯合磺酰二胺配体上、π 键合的 - 环戊二烯芳烃的轴向手性以及金属中心的手性的作用。我们讨论了该机制的新特征,包括氢化物中间体的金属手性变化如何剧烈地将 - 环戊二烯芳烃的配位从 η 切换到 η。此外,计算表明该机制涉及逐步的步骤,包括底物与结合的胺 NH 的对接,然后在苯乙酮的 O-原子质子化和手性纯醇的释放之前进行氢化物转移。这意味着 M-H 氢化物中间体的形成和稳定性高度依赖于质子化胺配体的存在。Os(II) 催化剂比 Ru(II) 类似物更稳定,这些研究说明了在元素周期表第 8 族的 4d 和 5d 第二和第三过渡金属同族物之间的机制行为的微妙差异。