Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany.
Department of Physics, Philipps-Universität Marburg, 35032 Marburg, Germany.
Nano Lett. 2022 Mar 23;22(6):2561-2568. doi: 10.1021/acs.nanolett.1c04741. Epub 2022 Feb 14.
The density-driven transition of an exciton gas into an electron-hole plasma remains a compelling question in condensed matter physics. In two-dimensional transition metal dichalcogenides, strongly bound excitons can undergo this phase change after transient injection of electron-hole pairs. Unfortunately, unavoidable nanoscale inhomogeneity in these materials has impeded quantitative investigation into this elusive transition. Here, we demonstrate how ultrafast polarization nanoscopy can capture the Mott transition through the density-dependent recombination dynamics of electron-hole pairs within a WSe homobilayer. For increasing carrier density, an initial monomolecular recombination of optically dark excitons transitions continuously into a bimolecular recombination of an unbound electron-hole plasma above 7 × 10 cm. We resolve how the Mott transition modulates over nanometer length scales, directly evidencing the strong inhomogeneity in stacked monolayers. Our results demonstrate how ultrafast polarization nanoscopy could unveil the interplay of strong electronic correlations and interlayer coupling within a diverse range of stacked and twisted two-dimensional materials.
激子气体向电子-空穴等离子体的密度驱动转变仍然是凝聚态物理中一个引人关注的问题。在二维过渡金属二卤族化合物中,强束缚激子可以在电子-空穴对的瞬时注入后经历这种相变。不幸的是,这些材料中不可避免的纳米级非均相性阻碍了对这一难以捉摸的转变的定量研究。在这里,我们展示了超快极化纳米显微镜如何通过 WSe 同层内电子-空穴对的密度依赖复合动力学来捕获莫特转变。随着载流子密度的增加,光暗激子的初始单分子复合连续转变为 7×10 cm 以上的无束缚电子-空穴等离子体的双分子复合。我们解决了莫特转变如何在纳米尺度上进行调制的问题,直接证明了堆叠单层中的强非均相性。我们的结果表明,超快极化纳米显微镜如何揭示一系列堆叠和扭曲二维材料中强电子相关和层间耦合的相互作用。