Suppr超能文献

单根纳米线的共振增强太赫兹近场光谱

Resonance-Amplified Terahertz Near-Field Spectroscopy of a Single Nanowire.

作者信息

Norman Sarah, Chu Greg, Peng Kun, Seddon James, Hale Lucy L, Tan Hark Hoe, Jagadish Chennupati, Mouthaan Ralf, Alexander-Webber Jack, Joyce Hannah J, Johnston Michael B, Mitrofanov Oleg, Siday Thomas

机构信息

Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom.

Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom.

出版信息

Nano Lett. 2024 Dec 11;24(49):15716-15723. doi: 10.1021/acs.nanolett.4c04395. Epub 2024 Nov 26.

Abstract

Nanoscale material systems are central to next-generation optoelectronic and quantum technologies, yet their development remains hindered by limited characterization tools, particularly at terahertz (THz) frequencies. Far-field THz spectroscopy techniques lack the sensitivity for investigating individual nanoscale systems, whereas in near-field THz nanoscopy, surface states, disorder, and sample-tip interactions often mask the response of the entire nanoscale system. Here, we present a THz resonance-amplified near-field spectroscopy technique that can detect subtle conductivity changes in isolated nanoscale systems─such as a single InAs nanowire─under ultrafast photoexcitation. By exploiting the spatial localization and resonant field enhancement in the gap of a bowtie antenna, our approach enables precise measurements of the nanostructures through shifts in the antenna resonant frequency, offering a direct means of extracting the system response, and unlocking investigations of ultrafast charge-carrier dynamics in isolated nanoscale and microscale systems.

摘要

纳米级材料系统是下一代光电子和量子技术的核心,但它们的发展仍然受到表征工具有限的阻碍,特别是在太赫兹(THz)频率下。远场太赫兹光谱技术缺乏研究单个纳米级系统的灵敏度,而在近场太赫兹纳米显微镜中,表面态、无序和样品-探针相互作用常常掩盖整个纳米级系统的响应。在此,我们提出一种太赫兹共振放大近场光谱技术,该技术能够在超快光激发下检测孤立纳米级系统(如单个砷化铟纳米线)中细微的电导率变化。通过利用蝴蝶结天线间隙中的空间定位和共振场增强,我们的方法能够通过天线共振频率的偏移对纳米结构进行精确测量,提供一种提取系统响应的直接手段,并开启对孤立纳米级和微米级系统中超快电荷载流子动力学的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed59/11638953/70caae40aa38/nl4c04395_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验