Suppr超能文献

啤酒感官特性的进化优化:一个模拟框架

Evolutionary Optimisation of Beer Organoleptic Properties: A Simulation Framework.

作者信息

Al-Rifaie Mohammad Majid, Cavazza Marc

机构信息

School of Computing & Mathematical Sciences, University of Greenwich, London SE10 9LS, UK.

National Institute of Informatics, Tokyo 101-8430, Japan.

出版信息

Foods. 2022 Jan 26;11(3):351. doi: 10.3390/foods11030351.

Abstract

Modern computational techniques offer new perspectives for the personalisation of food properties through the optimisation of their production process. This paper addresses the personalisation of beer properties in the specific case of craft beers where the production process is more flexible. Furthermore, this work presents a that could be suitable for more complex, industrial setups. An evolutionary computation technique was used to map brewers' desired organoleptic properties to their constrained ingredients to design novel recipes tailored for specific brews. While there exist several mathematical tools, using the original mathematical and chemistry formulas, or machine learning models that deal with the process of determining beer properties based on the predetermined quantities of ingredients, this work investigates an approach. The process, which was applied to this problem for the first time, was investigated in a number of simulations by "cloning" several commercial brands with diverse properties. Additional experiments were conducted, demonstrating the system's ability to deal with on-the-fly changes to users' preferences during the optimisation process. The results of the experiments pave the way for the discovery of new recipes under varying preferences, therefore facilitating the personalisation and alternative high-fidelity reproduction of existing and new products.

摘要

现代计算技术通过优化食品生产过程为食品特性的个性化提供了新的视角。本文探讨了精酿啤酒这种生产过程更为灵活的特定情况下啤酒特性的个性化问题。此外,这项工作还提出了一种适用于更复杂工业设置的方法。一种进化计算技术被用于将酿酒师期望的感官特性映射到其受限的原料上,以设计针对特定酿造的新颖配方。虽然存在几种使用原始数学和化学公式的数学工具,或处理基于预定原料量确定啤酒特性过程的机器学习模型,但这项工作研究了一种不同的方法。该方法首次应用于此问题,并通过“克隆”多个具有不同特性的商业品牌在一系列模拟中进行了研究。还进行了额外的实验,证明了该系统在优化过程中处理用户偏好实时变化的能力。实验结果为在不同偏好下发现新配方铺平了道路,从而促进了现有产品和新产品的个性化以及高保真度的替代复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/088a/8833895/46ae2b97248a/foods-11-00351-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验