Al-Najjar Hussein M Taqi, Mahdi Jasim M, Bokov Dmitry Olegovich, Khedher Nidhal Ben, Alshammari Naif Khalaf, Catalan Opulencia Maria Jade, Fagiry Moram A, Yaïci Wahiba, Talebizadehsardari Pouyan
Department of Energy Engineering, University of Baghdad, Baghdad 10071, Iraq.
Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, 119991 Moscow, Russia.
Nanomaterials (Basel). 2022 Jan 27;12(3):423. doi: 10.3390/nano12030423.
The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM-metal foam assembly that can readily be implemented with a wide range of operating conditions. Both computational fluid dynamic (CFD) and experimental validations proved the good accuracy of the proposed model for further applications. The present research found that the average PV cell temperature can be reduced by about 12 °C with a corresponding improvement in PCM melting duration of 127%. The addition of the metal foam is more effective at low solar radiation, ambient temperatures far below the PCM solidus temperature, and high wind speeds in nonlinear extension. With increasing of tilt angle, the PCM melting duration is linearly decreased by an average value of (13.4-25.0)% when the metal foam convective heat transfer coefficient is changed in the range of (0.5-20) W/m.K. The present research also shows that the PCM thickness has a positive linear effect on the PCM melting duration, however, modifying the metal foam configuration from 0.5 to 20 W/m.K has an effect on the PCM melting duration in such a way that the average PCM melting duration is doubled. This confirms the effectiveness of the inclusion of metal foam in the PV/PCM system.
光伏/相变材料(PV/PCM)系统中的熔化持续时间是热能管理的关键参数,因此改善该参数能够在蓄热能力、热条件以及光伏组件寿命方面实现更好的能量管理。一种创新且高效的改善熔化持续时间的技术是在PV/PCM系统中加入外部金属泡沫层。为了详细研究不同金属泡沫结构在对流换热系数方面的应用,本文提出了一种新开发的用于PV/PCM-金属泡沫组件的数学模型,该模型能够在广泛的运行条件下轻松实现。计算流体动力学(CFD)和实验验证均证明了所提模型在进一步应用中的良好准确性。本研究发现,光伏电池的平均温度可降低约12℃,同时相变材料的熔化持续时间相应提高127%。在低太阳辐射强度下、远低于相变材料固相线温度的环境温度以及高风速的非线性扩展情况下,添加金属泡沫更为有效。随着倾斜角度的增加,当金属泡沫的对流换热系数在(0.5-20)W/m·K范围内变化时,相变材料的熔化持续时间平均线性降低(13.4-25.0)%。本研究还表明,相变材料的厚度对其熔化持续时间有正线性影响,然而,将金属泡沫结构的对流换热系数从0.5 W/m·K改变到20 W/m·K时,对相变材料熔化持续时间的影响是使平均熔化持续时间翻倍。这证实了在PV/PCM系统中加入金属泡沫的有效性。