Suppr超能文献

机械力对聚合反应及聚合物的作用

Action of Mechanical Forces on Polymerization and Polymers.

作者信息

Ponomarenko Anatoly T, Tameev Alexey R, Shevchenko Vitaliy G

机构信息

Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya, 117393 Moscow, Russia.

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, bld. 4 Leninsky Prospect, 119071 Moscow, Russia.

出版信息

Polymers (Basel). 2022 Feb 3;14(3):604. doi: 10.3390/polym14030604.

Abstract

In this review, we summarize recent developments in the field of the mechanochemistry of polymers. The aim of the review is to consider the consequences of mechanical forces and actions on polymers and polymer synthesis. First, we review classical works on chemical reactions and polymerization processes under strong shear deformations. Then, we analyze two emerging directions of research in mechanochemistry-the role of mechanophores and, for the first time, new physical phenomena, accompanying external impulse mechanical actions on polymers. Mechanophores have been recently proposed as sensors of fatigue and cracks in polymers and composites. The effects of the high-pressure pulsed loading of polymers and composites include the Dzyaloshinskii-Moriya effect, emission of superradiation and the formation of metal nanoparticles. These effects provide deeper insight into the mechanism of chemical reactions under shear deformations and pave the way for further research in the interests of modern technologies.

摘要

在本综述中,我们总结了聚合物机械化学领域的最新进展。本综述的目的是探讨机械力和作用对聚合物及聚合物合成的影响。首先,我们回顾了关于强剪切变形下化学反应和聚合过程的经典研究。然后,我们分析了机械化学研究中两个新兴的方向——机械发色团的作用,以及首次出现的伴随外部脉冲机械作用于聚合物的新物理现象。机械发色团最近被提议作为聚合物和复合材料中疲劳和裂纹的传感器。聚合物和复合材料的高压脉冲加载效应包括Dzyaloshinskii-Moriya效应、超辐射发射和金属纳米颗粒的形成。这些效应为深入了解剪切变形下的化学反应机理提供了依据,并为服务于现代技术的进一步研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf97/8839360/0d93dbce8b16/polymers-14-00604-g001.jpg

相似文献

1
Action of Mechanical Forces on Polymerization and Polymers.
Polymers (Basel). 2022 Feb 3;14(3):604. doi: 10.3390/polym14030604.
2
Mechanochemical Activation of Superradiance in Paramagnetic Polymer Composites.
Materials (Basel). 2023 Feb 2;16(3):1297. doi: 10.3390/ma16031297.
3
Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores.
Chempluschem. 2020 Jun;85(6):1095-1103. doi: 10.1002/cplu.201900737. Epub 2020 Jan 31.
4
Triggering Forces at the Nanoscale: Technologies for Single-Chain Mechanical Activation and Manipulation.
Macromol Rapid Commun. 2021 Jan;42(1):e2000654. doi: 10.1002/marc.202000654. Epub 2020 Dec 6.
5
Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels.
Angew Chem Int Ed Engl. 2015 May 18;54(21):6168-72. doi: 10.1002/anie.201412413. Epub 2015 Mar 30.
6
Mechanochemistry of Topological Complex Polymer Systems.
Top Curr Chem. 2015;369:135-207. doi: 10.1007/128_2014_617.
7
Polymer mechanochemistry for the release of small cargoes.
Chem Commun (Camb). 2022 Apr 14;58(31):4813-4824. doi: 10.1039/d2cc00147k.
8
Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights.
J Am Chem Soc. 2013 Sep 11;135(36):13598-604. doi: 10.1021/ja4075997. Epub 2013 Aug 27.
9
Understanding the Mechanochemistry of Mechano-Radicals in Self-Growth Materials by Single-Molecule Force Spectroscopy.
Chemphyschem. 2024 Aug 1;25(15):e202300880. doi: 10.1002/cphc.202300880. Epub 2024 Jun 15.
10
Mechanochromic Polymers Based on Mechanophores.
Chempluschem. 2023 Jul;88(7):e202300213. doi: 10.1002/cplu.202300213.

本文引用的文献

1
The many flavours of mechanochemistry and its plausible conceptual underpinnings.
Nat Rev Chem. 2021 Mar;5(3):148-167. doi: 10.1038/s41570-020-00249-y. Epub 2021 Feb 2.
2
4
Mechanochemical tools for polymer materials.
Chem Soc Rev. 2021 Mar 21;50(6):4100-4140. doi: 10.1039/d0cs00940g. Epub 2021 Feb 5.
5
Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity.
Nat Chem. 2021 Jan;13(1):56-62. doi: 10.1038/s41557-020-00600-2. Epub 2020 Dec 21.
6
Triggering Forces at the Nanoscale: Technologies for Single-Chain Mechanical Activation and Manipulation.
Macromol Rapid Commun. 2021 Jan;42(1):e2000654. doi: 10.1002/marc.202000654. Epub 2020 Dec 6.
7
Mechanochemical and Size Reduction Machines for Biorefining.
Molecules. 2020 Nov 16;25(22):5345. doi: 10.3390/molecules25225345.
8
From Molecules to Polymers-Harnessing Inter- and Intramolecular Interactions to Create Mechanochromic Materials.
Macromol Rapid Commun. 2021 Jan;42(1):e2000573. doi: 10.1002/marc.202000573. Epub 2020 Nov 16.
9
Cholesterol Effect on the Specific Capacitance of Submicrometric DOPC Bilayer Patches Measured by in-Liquid Scanning Dielectric Microscopy.
Langmuir. 2020 Nov 3;36(43):12963-12972. doi: 10.1021/acs.langmuir.0c02251. Epub 2020 Oct 21.
10
Multicomponent Stress-Sensing Composites Fabricated by 3D-Printing Methodologies.
Macromol Rapid Commun. 2021 Jan;42(1):e2000450. doi: 10.1002/marc.202000450. Epub 2020 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验