Suppr超能文献

一种用于高效等离子体应用的金属孔结构中可及的集成纳米粒子。

An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications.

作者信息

Devaraj Vasanthan, Choi Jong-Wan, Lee Jong-Min, Oh Jin-Woo

机构信息

Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea.

Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea.

出版信息

Materials (Basel). 2022 Jan 21;15(3):792. doi: 10.3390/ma15030792.

Abstract

Addressing the severe deterioration of gap mode properties in spherical-shaped nanoparticles (NPs) becomes necessary due to their utilization in a wide range of multi-disciplinary applications. In this work, we report an integrated plasmonic nanostructure based on a spherical-shaped nanoparticle (NP) in a metallic hole as an alternative to a NP-only structure. With the help of three-dimensional (3D) electromagnetic simulations, we reveal that when a NP is positioned on the top of a metallic hole, it can exhibit superior gap-mode-based local-field intensity enhancement. The integrated nanostructure displayed a ~22-times increase in near-field enhancement characteristics, similar to cube- or disk-shaped nanostructure's plasmonic properties. From an experimental perspective, the NP positioning on top of the metallic hole can be realized more easily, facilitating a simple fabrication meriting our design approach. In addition to the above advantages, a good geometrical tolerance (metallic hole-gap size error of ~20 nm) supported by gap mode characteristics enhances flexibility in fabrication. These combined advantages from an integrated plasmonic nanostructure can resolve spherical-shaped NP disadvantages as an individual nanostructure and enhance its utilization in multi-disciplinary applications.

摘要

由于球形纳米粒子(NPs)在广泛的多学科应用中的使用,解决其间隙模式特性的严重恶化变得必要。在这项工作中,我们报道了一种基于金属孔中球形纳米粒子(NP)的集成等离子体纳米结构,作为仅NP结构的替代方案。借助三维(3D)电磁模拟,我们发现当一个NP位于金属孔顶部时,它可以表现出基于间隙模式的卓越局部场强增强。该集成纳米结构的近场增强特性提高了约22倍,类似于立方体或盘形纳米结构的等离子体特性。从实验角度来看,将NP定位在金属孔顶部更容易实现,这有利于我们设计方法的简单制造。除了上述优点外,间隙模式特性支持的良好几何公差(金属孔间隙尺寸误差约为20 nm)提高了制造的灵活性。这种集成等离子体纳米结构的综合优势可以解决球形NP作为单个纳米结构的缺点,并提高其在多学科应用中的利用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2130/8837044/40dbccc0115f/materials-15-00792-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验