Dumitrescu Georgiana-Dana, Serafim Andrada, Ginghina Raluca-Elena, Iovu Horia, Marinescu Rodica, Olăreț Elena, Stancu Izabela-Cristina
Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
Research and Innovation Center for CBRN Defense and Ecology, 041327 Bucharest, Romania.
Materials (Basel). 2022 Jan 22;15(3):840. doi: 10.3390/ma15030840.
Casein is a micellar protein rich in glutamic and aspartic acids as well as in phosphoserine. Considering its native affinity for calcium and the connection of sub-micelles through calcium phosphate nanoclusters, this protein holds promise for stimulating biomimetic mineralisation phenomena and direct binding with the mineral phase of hard tissues. In this work we prepared new hybrids based on casein embedded in a poly(2-hydroxyethyl methacrylate)-polyethyleneglycol diacrylate (PHEMA-PEGDA) hydrogel. The resulting materials were investigated structurally by Fourier transform infrared (FT-IR). Casein modified the water affinity and the rheological properties of the hybrids. The microstructure was explored by scanning electron microscopy (SEM) and the distribution of the protein was established by combined SEM micrographs and elemental mapping considering the casein-specific elements (P, N and S) not contained by the synthetic hydrogel matrix. The effect of casein on the mineralisation potential and stability of the mineral phase was investigated by FT-IR and SEM when alternating incubation in Ca/P solutions is performed. Increasing casein content in the hybrids leads to improved mineralisation, with localised formation of nanoapatite phase on the protein areas in the richest sample in protein. This behaviour was proved microstructurally by SEM and through overlapping elemental distribution of Ca and P from the newly formed mineral and P, S and N from the protein. This study indicates that nanoapatite-casein-PHEMA-PEGDA nanocomposites may be developed for potential use in bone repair and regeneration.
酪蛋白是一种富含谷氨酸、天冬氨酸以及磷酸丝氨酸的胶束蛋白。鉴于其对钙的天然亲和力以及通过磷酸钙纳米团簇实现亚胶束之间的连接,这种蛋白质有望刺激仿生矿化现象并与硬组织的矿质相直接结合。在本研究中,我们制备了基于嵌入聚(甲基丙烯酸2 - 羟乙酯) - 聚乙二醇二丙烯酸酯(PHEMA - PEGDA)水凝胶中的酪蛋白的新型杂化材料。通过傅里叶变换红外光谱(FT - IR)对所得材料进行了结构研究。酪蛋白改变了杂化材料的亲水性和流变学性质。通过扫描电子显微镜(SEM)探索了微观结构,并结合SEM显微照片和元素映射确定了蛋白质的分布,该映射考虑了合成水凝胶基质中不含有的酪蛋白特异性元素(P、N和S)。当在Ca/P溶液中交替孵育时,通过FT - IR和SEM研究了酪蛋白对矿化潜力和矿质相稳定性的影响。杂化材料中酪蛋白含量的增加导致矿化改善,在蛋白质含量最高的样品中,蛋白质区域局部形成了纳米磷灰石相。通过SEM以及新形成矿物中的Ca和P与蛋白质中的P、S和N的重叠元素分布,从微观结构上证明了这种行为。本研究表明,纳米磷灰石 - 酪蛋白 - PHEMA - PEGDA纳米复合材料有望开发用于骨修复和再生。