Suppr超能文献

酰胺振动对氢键的依赖性。

Dependence of amide vibrations on hydrogen bonding.

作者信息

Myshakina Nataliya S, Ahmed Zeeshan, Asher Sanford A

机构信息

Department of Chemistry, University of Pittsburgh, Pennsylvania.

出版信息

J Phys Chem B. 2008 Sep 25;112(38):11873-7. doi: 10.1021/jp8057355. Epub 2008 Aug 28.

Abstract

The effect of hydrogen bonding on the amide group vibrational spectra has traditionally been rationalized by invoking a resonance model where hydrogen bonding impacts the amide functional group by stabilizing its [(-)O-C=NH (+)] structure over the [O=C-NH] structure. However, Triggs and Valentini's UV-Raman study of solvation and hydrogen bonding effects on epsilon-caprolactum, N, N-dimethylacetamide (DMA), and N-methylacetamide (NMA) ( Triggs, N. E.; Valentini, J. J. J. Phys. Chem. 1992, 96, 6922-6931) casts doubt on the validity of this model by demonstrating that, contrary to the resonance model prediction, carbonyl hydrogen bonding does not impact the AmII' frequency of DMA. In this study, we utilize density functional theory (DFT) calculations to examine the impact of hydrogen bonding on the C=O and N-H functional groups of NMA, which is typically used as a simple model of the peptide bond. Our calculations indicate that, as expected, the hydrogen bonding frequency dependence of the AmI vibration predominantly derives from the C=O group, whereas the hydrogen bonding frequency dependence of the AmII vibration primarily derives from N-H hydrogen bonding. In contrast, the hydrogen bonding dependence of the conformation-sensitive AmIII band derives equally from both C=O and N-H groups and thus, is equally responsive to hydrogen bonding at the C=O or N-H site. Our work shows that a clear understanding of the normal mode composition of the amide vibrations is crucial for an accurate interpretation of the hydrogen bonding dependence of amide vibrational frequencies.

摘要

传统上,通过引入共振模型来解释氢键对酰胺基团振动光谱的影响,在该模型中,氢键通过使酰胺官能团的[(-)O-C=NH(+)]结构比[O=C-NH]结构更稳定,从而影响酰胺官能团。然而,Triggs和Valentini对ε-己内酰胺、N,N-二甲基乙酰胺(DMA)和N-甲基乙酰胺(NMA)的溶剂化和氢键效应进行的紫外拉曼研究(Triggs,N.E.;Valentini,J.J.J.Phys.Chem.1992,96,6922 - 6931)对该模型的有效性提出了质疑,该研究表明,与共振模型预测相反,羰基氢键并不影响DMA的AmII'频率。在本研究中,我们利用密度泛函理论(DFT)计算来研究氢键对NMA的C=O和N-H官能团的影响,NMA通常用作肽键的简单模型。我们的计算表明,正如预期的那样,AmI振动的氢键频率依赖性主要源于C=O基团,而AmII振动的氢键频率依赖性主要源于N-H氢键。相比之下,构象敏感的AmIII带的氢键依赖性同样源于C=O和N-H基团,因此,对C=O或N-H位点的氢键同样敏感。我们的工作表明,清楚了解酰胺振动的正常模式组成对于准确解释酰胺振动频率的氢键依赖性至关重要。

相似文献

1
Dependence of amide vibrations on hydrogen bonding.
J Phys Chem B. 2008 Sep 25;112(38):11873-7. doi: 10.1021/jp8057355. Epub 2008 Aug 28.
2
UV resonance Raman investigation of the aqueous solvation dependence of primary amide vibrations.
J Phys Chem B. 2015 Mar 12;119(10):3931-9. doi: 10.1021/jp511356u. Epub 2015 Feb 27.
3
The effect of protein backbone hydration on the amide vibrations in Raman and Raman optical activity spectra.
Phys Chem Chem Phys. 2019 Jan 23;21(4):1988-2005. doi: 10.1039/c8cp06423g.
7
Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.
Int J Mol Sci. 2016 Dec 30;18(1):4. doi: 10.3390/ijms18010004.
8
Hydration of simple amides. FTIR spectra of HDO and theoretical studies.
J Phys Chem B. 2008 Feb 28;112(8):2483-93. doi: 10.1021/jp7099509. Epub 2008 Feb 5.
10
Amide I vibrational frequencies of alpha-helical peptides based upon ONIOM and density functional theory (DFT) studies.
J Phys Chem B. 2008 Jan 31;112(4):1320-8. doi: 10.1021/jp077527j. Epub 2008 Jan 8.

引用本文的文献

1
A Biomaterial-Based Approach to Trypsin Sensing: Design and Optimization of Gelatin-Casein Films.
ACS Omega. 2025 Aug 12;10(33):37597-37610. doi: 10.1021/acsomega.5c03938. eCollection 2025 Aug 26.
3
Unveiling Vibrational Couplings in Model Peptides in Solution by a Theoretical Approach.
Molecules. 2025 Jul 4;30(13):2854. doi: 10.3390/molecules30132854.
5
Superconcentration Strategy Allows Sodium Metal Compatibility in Deep Eutectic Solvents for Sodium-Ion Batteries.
ACS Omega. 2024 Oct 1;9(41):42343-42352. doi: 10.1021/acsomega.4c02896. eCollection 2024 Oct 15.
7
Infrared Spectroscopy of SARS-CoV-2 Viral Protein: from Receptor Binding Domain to Spike Protein.
Adv Sci (Weinh). 2024 Oct;11(39):e2400823. doi: 10.1002/advs.202400823. Epub 2024 Jul 12.
8
Mechanistic study of the stabilization of dentin-bonded restorative interfaces via collagen reinforcement by multi-acrylamides.
Dent Mater. 2024 Aug;40(8):1128-1137. doi: 10.1016/j.dental.2024.05.027. Epub 2024 May 31.
10
Modulatory role of terminal monomeric flavan-3-ol units in the viscoelasticity of dentin.
J Biomed Mater Res B Appl Biomater. 2024 Jan;112(1):e35333. doi: 10.1002/jbm.b.35333. Epub 2023 Oct 4.

本文引用的文献

6
Polyproline II structure in a sequence of seven alanine residues.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9190-5. doi: 10.1073/pnas.112193999. Epub 2002 Jun 28.
7
The partial charge of the nitrogen atom in peptide bonds.
Protein Sci. 1997 Nov;6(11):2477-82. doi: 10.1002/pro.5560061125.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验