Zhao Lingyan, Shi Zheren, Wang Zheng, Yang Fuqiang
School of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Materials (Basel). 2022 Jan 24;15(3):881. doi: 10.3390/ma15030881.
Stress corrosion cracking (SCC) is an important destruction form of materials such as stainless steel, nickel-based alloy and their welded components in nuclear reactor pressure vessels and pipes. The existing popular quantitative prediction models of SCC crack growth rate are mainly influenced by fracture toughness values or . In particular, the composite constraint, containing the in-plane constraints and out-of-plane constraints around the crack front, has a significant influence on the fracture toughness of structures in nuclear power plants. Since the plastic strain gradient is a characterization parameter of the quantitative prediction model for crack growth rate, it may be a characterization parameter of composite constraint. On the basis of the experimental data at a low temperature of alloy steel 22NiMoCr3-7 used in nuclear pressure vessels, the gradient of equivalent plastic strain around the crack fronts at different constraint levels was calculated using the finite element method, which introduces a new non-dimensional constraint parameter , to uniformly characterize the in-plane and out-of-plane constraint effects. Compared with constraint parameters or , the process of obtaining parameters or is much simpler and easier. In a wide range, a single correlation curve was drawn between parameter and normalized fracture toughness values / or / of specimens at a low or high constraint level. Therefore, regardless of whether the constraint levels of the structures or standard specimens are low or high, constraint parameter can be used to measure their fracture toughness. To build an evaluation method that has structural integrity and safety while containing the composite constraint effects, in addition to accurate theoretical interpretation, further verification experiments, numerical simulations and detailed discussions are still needed.
应力腐蚀开裂(SCC)是核反应堆压力容器和管道中不锈钢、镍基合金及其焊接部件等材料的一种重要破坏形式。现有的流行的SCC裂纹扩展速率定量预测模型主要受断裂韧性值或 的影响。特别是,包含裂纹前沿面内约束和面外约束的复合约束对核电站结构的断裂韧性有显著影响。由于塑性应变梯度是裂纹扩展速率定量预测模型的一个表征参数,它可能是复合约束的一个表征参数。基于核压力容器中使用的22NiMoCr3 - 7合金钢在低温下的实验数据,采用有限元方法计算了不同约束水平下裂纹前沿等效塑性应变 的梯度,引入了一个新的无量纲约束参数 ,以统一表征面内和面外约束效应。与约束参数 或 相比,获取参数 或 的过程要简单得多。在很宽的范围内,绘制了参数 与低或高约束水平下试样的归一化断裂韧性值 / 或 / 之间的单一相关曲线。因此,无论结构或标准试样的约束水平是低还是高,约束参数 都可用于衡量其断裂韧性。为了建立一种既包含复合约束效应又具有结构完整性和安全性的评估方法,除了准确的理论解释外,还需要进一步的验证实验、数值模拟和详细讨论。