Suppr超能文献

基于响应曲面法和人工神经网络方法对电火花加工参数对Inconel 718加工性能影响的建模与分析

Modelling and Analysis of the Effect of EDM-Drilling Parameters on the Machining Performance of Inconel 718 Using the RSM and ANNs Methods.

作者信息

Machno Magdalena, Matras Andrzej, Szkoda Maciej

机构信息

Department of Rail Vehicles and Transport, Faculty of Mechanical Engineering, Cracow University of Technology, 31-155 Cracow, Poland.

Department of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, 31-155 Cracow, Poland.

出版信息

Materials (Basel). 2022 Feb 2;15(3):1152. doi: 10.3390/ma15031152.

Abstract

Electrical Discharge Machining (EDM) is one of the most efficient processes to produce high-ratio micro holes in difficult-to-cut materials in the Inconel 718 superalloy. It is important to apply a statistical technique that guarantees a high fit between the predicted values and those measured during analysis of test results. It was especially important to check which method gives a better fit of the calculated result values in case they were relatively small and/or close to each other. This study developed models with the use of the response surface methodology (RSM) and artificial neural networks (ANNs). The aim of the study was comparison between two models (RSM and ANNs) and to check which model gives a better data fit for relatively similar values in individual tests. In all cases, the neural network models provided a better value fit. This is due to the fact that neural networks use better fitted functions than in the case of the RSM method using quadratic fitting. This comparison included the aspect ratio hole and the thickness side gap data, the values of which for individual tests were very similar. The paper reports an analysis of the impact of parameter variables on the analyzed factors. Higher values of current amplitude, pulse time length, and rotational speed of the working electrode resulted in higher drilling speed (above 15 µm/s, lower linear tool wear (below 15%), higher aspect ratio hole (above 26), lower hole conicity (below 0.005), and lower side gap thickness at the hole inlet (below 100 µm).

摘要

电火花加工(EDM)是在Inconel 718高温合金等难切削材料上加工高径比微孔的最有效工艺之一。应用一种统计技术很重要,该技术能确保预测值与测试结果分析过程中测量的值高度拟合。在计算结果值相对较小和/或彼此接近的情况下,检查哪种方法能使计算结果值拟合得更好尤为重要。本研究利用响应面法(RSM)和人工神经网络(ANNs)开发了模型。该研究的目的是比较两种模型(RSM和ANNs),并检查哪种模型在各个测试中对相对相似的值能给出更好的数据拟合。在所有情况下,神经网络模型都提供了更好的值拟合。这是因为神经网络使用的拟合函数比采用二次拟合的RSM方法更好。这种比较包括孔的高径比和厚度侧间隙数据,各个测试中这些数据的值非常相似。本文报告了参数变量对分析因素的影响分析。更高的电流幅值、脉冲持续时间和工作电极转速会导致更高的钻孔速度(高于15 µm/s)、更低的线性刀具磨损(低于15%)、更高的孔高径比(高于26)、更低的孔锥度(低于0.005)以及更低的孔入口处侧间隙厚度(低于100 µm)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb49/8838809/30c1ad0a282d/materials-15-01152-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验