Suppr超能文献

9Cr-F/M钢在高温下的微观结构与拉伸性能

Microstructures and Tensile Properties of 9Cr-F/M Steel at Elevated Temperatures.

作者信息

Zhang Guangjie, Zhang Qinggang, Yang Junfeng, Xie Zhuoming, Zhang Linchao, Liu Rui, Li Gang, Wang Hui, Fang Qianfeng, Wang Xianping

机构信息

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Scinece Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China.

出版信息

Materials (Basel). 2022 Feb 8;15(3):1248. doi: 10.3390/ma15031248.

Abstract

Tensile properties and microstructure changes under different stress states of tempered 9Cr-F/M steel were characterized using a transmission electron microscope (TEM), electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), Vickers hardness tester, and tensile tester. This tempered steel has a typical lath martensite structure with only a few polygonal ferrites embedded, and MC and MX phases nucleated on the lath boundaries or within the sub-grains. At elevated temperatures, the strength of the steel decreases. However, the elongation at 400 °C is lower than that at room temperature. For the necking zone, tensile deformation made the grain elongated to the direction of applied stress and thus the grain's cross-section becomes smaller. For samples with rectangular working area cross-section, the deformation in the TD direction was more severe than that in the ND direction, which made the grain elongated in the TD direction. These results can provide some guidance for composition optimization of the 9Cr-F/M steel and facilitate a better understanding of the fracture mechanism under different stress states.

摘要

采用透射电子显微镜(TEM)、电子背散射衍射(EBSD)、扫描电子显微镜(SEM)、维氏硬度计和拉伸试验机对回火9Cr-F/M钢在不同应力状态下的拉伸性能和微观结构变化进行了表征。这种回火钢具有典型的板条马氏体组织,仅嵌入少量多边形铁素体,且MC和MX相在板条边界或亚晶粒内形核。在高温下,钢的强度降低。然而,400℃时的伸长率低于室温时的伸长率。对于颈缩区,拉伸变形使晶粒沿外加应力方向伸长,从而使晶粒的横截面变小。对于工作区横截面为矩形的样品,TD方向的变形比ND方向更严重,这使得晶粒在TD方向伸长。这些结果可为9Cr-F/M钢的成分优化提供一些指导,并有助于更好地理解不同应力状态下的断裂机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b4d/8838709/9b14e489bf71/materials-15-01248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验