Suppr超能文献

基于增强轨迹特征的船舶类型分类分层时空嵌入方法。

A Hierarchical Spatial-Temporal Embedding Method Based on Enhanced Trajectory Features for Ship Type Classification.

机构信息

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.

School of Computing Science and Technology, University of Chinese Academy of Sciences, Beijing 100039, China.

出版信息

Sensors (Basel). 2022 Jan 18;22(3):711. doi: 10.3390/s22030711.

Abstract

Ship type classification is an essential task in maritime navigation domains, contributing to shipping monitoring, analysis, and forecasting. Presently, with the development of ship positioning and monitoring systems, many ship trajectory acquisitions make it possible to classify ships according to their movement pattern. Existing methods of ship classification based on trajectory include classical sequence analysis and deep learning methods. However, the real ship trajectories are unevenly distributed in geographical space, which leads to many problems in inferring the ship movement mode on the original ship trajectory. This paper proposes a hierarchical spatial-temporal embedding method based on enhanced trajectory features for ship type classification. We first preprocess the trajectory and combine the port information to transform the original ship trajectory into the moored records of ships, removing the unevenly distributed points in the trajectory data and enhancing key points' semantic information. Then, we propose a Hierarchical Spatial-Temporal Embedding Method (Hi-STEM) for ship classification. Hi-STEM maps moored records in the original geographical space into the feature space and can efficiently find the classification plane in the feature space. Experiments are conducted on real-world datasets and compared with several existing methods. The result shows that our approach has high accuracy in ship classification on ship moored records. We make the source code and datasets publicly available.

摘要

船舶类型分类是航海领域的一项重要任务,有助于航运监测、分析和预测。目前,随着船舶定位和监测系统的发展,许多船舶轨迹的获取使得根据其运动模式对船舶进行分类成为可能。基于轨迹的船舶分类现有方法包括经典序列分析和深度学习方法。然而,真实的船舶轨迹在地理空间中分布不均匀,这导致在原始船舶轨迹上推断船舶运动模式存在许多问题。本文提出了一种基于增强轨迹特征的分层时空嵌入方法,用于船舶类型分类。我们首先对轨迹进行预处理,并结合港口信息将原始船舶轨迹转换为船舶的系泊记录,去除轨迹数据中的不均匀分布点,并增强关键点的语义信息。然后,我们提出了一种用于船舶分类的分层时空嵌入方法(Hi-STEM)。Hi-STEM 将系泊记录映射到原始地理空间中的特征空间中,并可以有效地在特征空间中找到分类平面。在真实数据集上进行了实验,并与几种现有方法进行了比较。结果表明,我们的方法在船舶系泊记录上的船舶分类具有很高的准确性。我们公开了源代码和数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bc/8840361/003640bd824e/sensors-22-00711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验