Suppr超能文献

目标跟踪的性能评估指标和方法:综述。

Performance Evaluation Metrics and Approaches for Target Tracking: A Survey.

机构信息

Key Laboratory of Information Fusion Technology, Northwestern Polytechnical University, Xi'an 710072, China.

Key Laboratory of Science and Technology on ATR, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2022 Jan 20;22(3):793. doi: 10.3390/s22030793.

Abstract

Performance evaluation (PE) plays a key role in the design and validation of any target-tracking algorithms. In fact, it is often closely related to the definition and derivation of the optimality/suboptimality of an algorithm such as that all minimum mean-squared error estimators are based on the minimization of the mean-squared error of the estimation. In this paper, we review both classic and emerging novel PE metrics and approaches in the context of estimation and target tracking. First, we briefly review the evaluation metrics commonly used for target tracking, which are classified into three groups corresponding to the most important three factors of the tracking algorithm, namely correctness, timeliness, and accuracy. Then, comprehensive evaluation (CE) approaches such as cloud barycenter evaluation, fuzzy CE, and grey clustering are reviewed. Finally, we demonstrate the use of these PE metrics and CE approaches in representative target tracking scenarios.

摘要

性能评估(PE)在任何目标跟踪算法的设计和验证中都起着关键作用。事实上,它通常与算法的最优性/次优性的定义和推导密切相关,例如所有最小均方误差估计器都是基于估计的均方误差最小化的。本文在估计和目标跟踪的背景下,综述了经典的和新兴的新颖的 PE 度量和方法。首先,我们简要回顾了常用于目标跟踪的评估指标,这些指标分为三组,对应于跟踪算法的三个最重要的因素,即正确性、及时性和准确性。然后,综述了综合评估(CE)方法,如云重心评估、模糊 CE 和灰色聚类。最后,我们展示了这些 PE 度量和 CE 方法在代表性目标跟踪场景中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2266/8839404/37b70bde2d04/sensors-22-00793-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验