Suppr超能文献

基于新生儿体模的基于摄像头的病理性状态模拟检测设置。

A Setup for Camera-Based Detection of Simulated Pathological States Using a Neonatal Phantom.

机构信息

Chair for Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany.

出版信息

Sensors (Basel). 2022 Jan 26;22(3):957. doi: 10.3390/s22030957.

Abstract

Premature infants are among the most vulnerable patients in a hospital. Due to numerous complications associated with immaturity, a continuous monitoring of vital signs with a high sensitivity and accuracy is required. Today, wired sensors are attached to the patient's skin. However, adhesive electrodes can be potentially harmful as they can damage the very thin immature skin. Although unobtrusive monitoring systems using cameras show the potential to replace cable-based techniques, advanced image processing algorithms are data-driven and, therefore, need much data to be trained. Due to the low availability of public neonatal image data, a patient phantom could help to implement algorithms for the robust extraction of vital signs from video recordings. In this work, a camera-based system is presented and validated using a neonatal phantom, which enabled a simulation of common neonatal pathologies such as hypo-/hyperthermia and brady-/tachycardia. The implemented algorithm was able to continuously measure and analyze the heart rate via photoplethysmography imaging with a mean absolute error of 0.91 bpm, as well as the distribution of a neonate's skin temperature with a mean absolute error of less than 0.55 °C. For accurate measurements, a temperature gain offset correction on the registered image from two infrared thermography cameras was performed. A deep learning-based keypoint detector was applied for temperature mapping and guidance for the feature extraction. The presented setup successfully detected several levels of hypo- and hyperthermia, an increased central-peripheral temperature difference, tachycardia and bradycardia.

摘要

早产儿是医院中最脆弱的患者群体之一。由于与不成熟相关的许多并发症,需要持续、高灵敏度且高精度地监测生命体征。目前,将有线传感器贴附在患者皮肤上。然而,粘性电极可能会造成潜在的危害,因为它们可能会损伤非常薄的不成熟皮肤。尽管使用摄像头的非侵入式监测系统具有取代基于电缆的技术的潜力,但先进的图像处理算法是数据驱动的,因此需要大量数据进行训练。由于公共新生儿图像数据的可用性较低,患者模拟体可以帮助实现从视频记录中稳健提取生命体征的算法。在这项工作中,提出了一种基于摄像头的系统,并使用新生儿模拟体进行了验证,该模拟体能够模拟常见的新生儿病理,如低体温/体温过高和心动过缓/心动过速。所实现的算法能够通过光体积描记成像连续测量和分析心率,平均绝对误差为 0.91 bpm,以及新生儿皮肤温度分布,平均绝对误差小于 0.55 °C。为了进行准确的测量,对来自两个红外热成像摄像机的注册图像进行了温度增益偏移校正。应用基于深度学习的关键点检测器进行温度映射和特征提取的指导。所提出的设置成功检测到了几个水平的低体温和体温过高、中心-外周温差增加、心动过速和心动过缓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3210/8838518/eab703b10ec0/sensors-22-00957-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验