Suppr超能文献

使用深度学习从摄像机视频数据中提取心-呼吸信号,实现连续非接触式生命体征监测。

Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom. Author to whom any correspndence should be addressed.

出版信息

Physiol Meas. 2019 Dec 2;40(11):115001. doi: 10.1088/1361-6579/ab525c.

Abstract

UNLABELLED

Non-contact vital sign monitoring enables the estimation of vital signs, such as heart rate, respiratory rate and oxygen saturation (SpO), by measuring subtle color changes on the skin surface using a video camera. For patients in a hospital ward, the main challenges in the development of continuous and robust non-contact monitoring techniques are the identification of time periods and the segmentation of skin regions of interest (ROIs) from which vital signs can be estimated. We propose a deep learning framework to tackle these challenges.

APPROACH

This paper presents two convolutional neural network (CNN) models. The first network was designed for detecting the presence of a patient and segmenting the patient's skin area. The second network combined the output from the first network with optical flow for identifying time periods of clinical intervention so that these periods can be excluded from the estimation of vital signs. Both networks were trained using video recordings from a clinical study involving 15 pre-term infants conducted in the high dependency area of the neonatal intensive care unit (NICU) of the John Radcliffe Hospital in Oxford, UK.

MAIN RESULTS

Our proposed methods achieved an accuracy of 98.8% for patient detection, a mean intersection-over-union (IOU) score of 88.6% for skin segmentation and an accuracy of 94.5% for clinical intervention detection using two-fold cross validation. Our deep learning models produced accurate results and were robust to different skin tones, changes in light conditions, pose variations and different clinical interventions by medical staff and family visitors.

SIGNIFICANCE

Our approach allows cardio-respiratory signals to be continuously derived from the patient's skin during which the patient is present and no clinical intervention is undertaken.

摘要

目的:利用摄像机测量皮肤表面的细微颜色变化,实现非接触式生命体征监测,从而估算心率、呼吸频率和血氧饱和度(SpO2)等生命体征。在医院病房中,开发连续、稳健的非接触式监测技术的主要挑战是识别时间段和分割可用于估算生命体征的皮肤感兴趣区域(ROI)。为此,我们提出了一种深度学习框架来应对这些挑战。

方法:本文提出了两种卷积神经网络(CNN)模型。第一个网络用于检测患者的存在并分割患者的皮肤区域。第二个网络将第一个网络的输出与光流相结合,用于识别临床干预的时间段,以便将这些时间段排除在生命体征估算之外。两个网络均使用在英国牛津约翰拉德克利夫医院新生儿重症监护病房(NICU)高依赖区进行的涉及 15 名早产儿的临床研究的视频记录进行训练。

结果:我们提出的方法在患者检测方面的准确率达到 98.8%,在皮肤分割方面的平均交并比(IOU)得分为 88.6%,在使用两折交叉验证进行临床干预检测方面的准确率达到 94.5%。我们的深度学习模型产生了准确的结果,并且对不同肤色、光照条件变化、姿势变化以及医护人员和家属访客的不同临床干预具有鲁棒性。

结论:我们的方法允许在患者存在且未进行任何临床干预的情况下,从患者皮肤连续提取心-呼吸信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18b9/7655150/2a11d532ea92/pmeaab525cf01_hr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验