Suppr超能文献

多源的相位相关单通道连续波多普勒雷达识别。

Phase Correlation Single Channel Continuous Wave Doppler Radar Recognition of Multiple Sources.

机构信息

Department of Electrical and Computer Engineering, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.

出版信息

Sensors (Basel). 2022 Jan 26;22(3):970. doi: 10.3390/s22030970.

Abstract

Continuous-wave Doppler radar (CWDR) can be used to remotely detect physiological parameters, such as respiration and heart signals. However, detecting and separating multiple targets remains a challenging task for CWDR. While complex transceiver architectures and advanced signal processing algorithms have been demonstrated as effective for multiple target separations in some scenarios, the separation of equidistant sources within a single antenna beam remains a challenge. This paper presents an alternative phase tuning approach that exploits the diversity among target distances and physiological parameters for multi-target detection. The design utilizes a voltage-controlled analog phase shifter to manipulate the phase correlation of the CWDR and thus create different signal mixtures from the multiple targets, then separates them in the frequency domain by suppressing individual signals sequentially. We implemented the phase correlation system based on a 2.4 GHz single-channel CWDR and evaluated it against multiple mechanical and human targets. The experimental results demonstrated successful separation of nearly equidistant targets within an antenna beam, equivalent to separating physiological signals of two people seated shoulder to shoulder.

摘要

连续波多普勒雷达(CWDR)可用于远程检测生理参数,如呼吸和心跳信号。然而,对于 CWDR 来说,检测和分离多个目标仍然是一项具有挑战性的任务。虽然复杂的收发架构和先进的信号处理算法已经在某些场景中被证明可以有效地分离多个目标,但在单个天线波束内分离等距源仍然是一个挑战。本文提出了一种替代的相位调谐方法,利用目标距离和生理参数的多样性进行多目标检测。该设计利用电压控制模拟移相器来操纵 CWDR 的相位相关性,从而从多个目标中创建不同的信号混合物,然后通过依次抑制单个信号在频域中将它们分离。我们基于 2.4GHz 单通道 CWDR 实现了该相位相关系统,并针对多个机械和人体目标进行了评估。实验结果表明,成功地分离了天线波束内几乎等距的目标,相当于分离肩并肩坐着的两个人的生理信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f9/8840519/3773bd1ca453/sensors-22-00970-g001.jpg

相似文献

1
2
Non-contact physiological signal detection using continuous wave Doppler radar.
Biomed Mater Eng. 2014;24(1):993-1000. doi: 10.3233/BME-130896.
3
Separation of Doppler radar-based respiratory signatures.
Med Biol Eng Comput. 2016 Aug;54(8):1169-79. doi: 10.1007/s11517-015-1379-3. Epub 2015 Sep 10.
4
Non-Contact Measurement of Human Respiration and Heartbeat Using W-band Doppler Radar Sensor.
Sensors (Basel). 2020 Sep 12;20(18):5209. doi: 10.3390/s20185209.
5
Vital Signal Detection Using Multi-Radar for Reductions in Body Movement Effects.
Sensors (Basel). 2021 Nov 7;21(21):7398. doi: 10.3390/s21217398.
6
A Method for Remotely Sensing Vital Signs of Human Subjects Outdoors.
Sensors (Basel). 2015 Jun 24;15(7):14830-44. doi: 10.3390/s150714830.
7
9
A non-contact vital signs monitor.
Crit Rev Biomed Eng. 2000;28(1-2):173-8. doi: 10.1615/critrevbiomedeng.v28.i12.290.
10
Signal Separation and Tracking Algorithm for Multi-Person Vital Signs by Using Doppler Radar.
IEEE Trans Biomed Circuits Syst. 2020 Dec;14(6):1346-1361. doi: 10.1109/TBCAS.2020.3029709. Epub 2020 Dec 31.

引用本文的文献

本文引用的文献

1
Constant-Modulus-Waveform Design for Multiple-Target Detection in Colocated MIMO Radar.
Sensors (Basel). 2019 Sep 19;19(18):4040. doi: 10.3390/s19184040.
2
3
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review.
Sensors (Basel). 2016 Jul 26;16(8):1169. doi: 10.3390/s16081169.
4
Separation of Doppler radar-based respiratory signatures.
Med Biol Eng Comput. 2016 Aug;54(8):1169-79. doi: 10.1007/s11517-015-1379-3. Epub 2015 Sep 10.
5
Surface chest motion decomposition for cardiovascular monitoring.
Sci Rep. 2014 May 28;4:5093. doi: 10.1038/srep05093.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验