Suppr超能文献

用于心血管监测的胸部表面运动分解

Surface chest motion decomposition for cardiovascular monitoring.

作者信息

Shafiq Ghufran, Veluvolu Kalyana C

机构信息

School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, South Korea 702-701.

出版信息

Sci Rep. 2014 May 28;4:5093. doi: 10.1038/srep05093.

Abstract

Surface chest motion can be easily monitored with a wide variety of sensors such as pressure belts, fiber Bragg gratings and inertial sensors, etc. The current applications of these sensors are mainly restricted to respiratory motion monitoring/analysis due to the technical challenges involved in separation of the cardiac motion from the dominant respiratory motion. The contribution of heart to the surface chest motion is relatively very small as compared to the respiratory motion. Further, the heart motion spectrally overlaps with the respiratory harmonics and their separation becomes even more challenging. In this paper, we approach this source separation problem with independent component analysis (ICA) framework. ICA with reference (ICA-R) yields only desired component with improved separation, but the method is highly sensitive to the reference generation. Several reference generation approaches are developed to solve the problem. Experimental validation of these proposed approaches is performed with chest displacement data and ECG obtained from healthy subjects under normal breathing and post-exercise conditions. The extracted component morphologically matches well with the collected ECG. Results show that the proposed methods perform better than conventional band pass filtering.

摘要

使用各种传感器,如压力带、光纤布拉格光栅和惯性传感器等,可以轻松监测胸部表面运动。由于从占主导地位的呼吸运动中分离出心脏运动存在技术挑战,这些传感器目前的应用主要局限于呼吸运动监测/分析。与呼吸运动相比,心脏对胸部表面运动的贡献相对非常小。此外,心脏运动在频谱上与呼吸谐波重叠,它们的分离变得更具挑战性。在本文中,我们使用独立成分分析(ICA)框架来解决这个源分离问题。带参考的ICA(ICA-R)仅产生具有改进分离效果的期望成分,但该方法对参考生成高度敏感。为解决该问题开发了几种参考生成方法。使用从健康受试者在正常呼吸和运动后条件下获得的胸部位移数据和心电图对这些提出的方法进行了实验验证。提取的成分在形态上与收集到的心电图匹配良好。结果表明,所提出的方法比传统的带通滤波性能更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0177/4035586/7b885945e931/srep05093-f1.jpg

相似文献

1
Surface chest motion decomposition for cardiovascular monitoring.
Sci Rep. 2014 May 28;4:5093. doi: 10.1038/srep05093.
2
An automated approach to fully self-gated free-running cardiac and respiratory motion-resolved 5D whole-heart MRI.
Magn Reson Med. 2019 Dec;82(6):2118-2132. doi: 10.1002/mrm.27898. Epub 2019 Jul 18.
3
Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals.
Med Biol Eng Comput. 2008 Mar;46(3):251-61. doi: 10.1007/s11517-007-0293-8. Epub 2007 Dec 7.
4
A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating.
Sensors (Basel). 2019 Sep 24;19(19):0. doi: 10.3390/s19194137.
5
Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation.
J Biophotonics. 2018 May;11(5):e201700263. doi: 10.1002/jbio.201700263. Epub 2018 Feb 26.
6
A robust approach for ECG-based analysis of cardiopulmonary coupling.
Med Eng Phys. 2016 Jul;38(7):671-678. doi: 10.1016/j.medengphy.2016.02.015. Epub 2016 Apr 23.
7
Simple method for adaptive filtering of motion artifacts in E-textile wearable ECG sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:3807-10. doi: 10.1109/EMBC.2015.7319223.
10
An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6496-9. doi: 10.1109/EMBC.2012.6347482.

引用本文的文献

1
Contactless and short-range vital signs detection with doppler radar millimetre-wave (76-81 GHz) sensing firmware.
Healthc Technol Lett. 2024 Feb 27;11(6):427-436. doi: 10.1049/htl2.12075. eCollection 2024 Dec.
3
Model-based estimation of heart movements using microwave Doppler radar sensor.
J Physiol Anthropol. 2024 Oct 21;43(1):27. doi: 10.1186/s40101-024-00373-4.
4
Attention Detection by Heartbeat and Respiratory Features from Radio-Frequency Sensor.
Sensors (Basel). 2022 Oct 21;22(20):8047. doi: 10.3390/s22208047.
5
A Soft and Skin-Interfaced Smart Patch Based on Fiber Optics for Cardiorespiratory Monitoring.
Biosensors (Basel). 2022 May 26;12(6):363. doi: 10.3390/bios12060363.
6
8
A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology.
Sci Rep. 2021 Oct 27;11(1):21162. doi: 10.1038/s41598-021-00574-2.
9
Eye-blink artifact removal from single channel EEG with k-means and SSA.
Sci Rep. 2021 May 26;11(1):11043. doi: 10.1038/s41598-021-90437-7.

本文引用的文献

1
Precordial vibrations provide noninvasive detection of early-stage hemorrhage.
Shock. 2014 Feb;41(2):91-6. doi: 10.1097/SHK.0000000000000077.
3
Wearable seismocardiography: towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects.
Auton Neurosci. 2013 Nov;178(1-2):50-9. doi: 10.1016/j.autneu.2013.04.005. Epub 2013 May 9.
5
Remote sensing of patterns of cardiac activity on an ambulatory subject using millimeter-wave interferometry and statistical methods.
Med Biol Eng Comput. 2013 Feb;51(1-2):135-42. doi: 10.1007/s11517-012-0977-6. Epub 2012 Oct 26.
6
Uranus: a middleware architecture for dependable AAL and vital signs monitoring applications.
Sensors (Basel). 2012;12(3):3145-61. doi: 10.3390/s120303145. Epub 2012 Mar 7.
7
Noncontact millimeter-wave real-time detection and tracking of heart rate on an ambulatory subject.
IEEE Trans Inf Technol Biomed. 2012 Sep;16(5):927-34. doi: 10.1109/TITB.2012.2204760. Epub 2012 Jun 13.
8
A review of wearable sensors and systems with application in rehabilitation.
J Neuroeng Rehabil. 2012 Apr 20;9:21. doi: 10.1186/1743-0003-9-21.
9
Remote sensing of heart rate and patterns of respiration on a stationary subject using 94-GHz millimeter-wave interferometry.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1671-7. doi: 10.1109/TBME.2011.2111371. Epub 2011 Feb 4.
10
Mobility support for health monitoring at home using wearable sensors.
IEEE Trans Inf Technol Biomed. 2011 Jul;15(4):539-49. doi: 10.1109/TITB.2010.2104326. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验