Data and Target Engineering Institute, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China.
Research Institute for National Defense Engineering of Academy of Military Science PLA, Luoyang 471023, China.
Sensors (Basel). 2022 Feb 2;22(3):1127. doi: 10.3390/s22031127.
Accurate and fast identification of vibration signals detected based on the phase-sensitive optical time-domain reflectometer (Φ-OTDR) is crucial in reducing the false-alarm rate of the long-distance distributed vibration warning system. This study proposes a computer vision-based Φ-OTDR multi-vibration events detection method in real-time, which can effectively detect perimeter intrusion events and reduce personnel patrol costs. Pulse accumulation, pulse cancellers, median filter, and pseudo-color processing are employed for vibration signal feature enhancement to generate vibration spatio-temporal images and form a customized dataset. This dataset is used to train and evaluate an improved YOLO-A30 based on the YOLO target detection meta-architecture to improve system performance. Experiments show that using this method to process 8069 vibration data images generated from 5 abnormal vibration activities for two types of fiber optic laying scenarios, buried underground or hung on razor barbed wire at the perimeter of high-speed rail, the system mAP@.5 is 99.5%, 555 frames per second (FPS), and can detect a theoretical maximum distance of 135.1 km per second. It can quickly and effectively identify abnormal vibration activities, reduce the false-alarm rate of the system for long-distance multi-vibration along high-speed rail lines, and significantly reduce the computational cost while maintaining accuracy.
准确快速地识别基于相敏光时域反射仪(Φ-OTDR)检测到的振动信号,对于降低长距离分布式振动预警系统的误报率至关重要。本研究提出了一种基于计算机视觉的Φ-OTDR 多振动事件实时检测方法,可有效检测周界入侵事件,降低人员巡逻成本。采用脉冲积累、脉冲消除器、中值滤波和伪彩色处理来增强振动信号特征,生成振动时空图像并形成定制数据集。该数据集用于训练和评估基于 YOLO 目标检测元架构的改进 YOLO-A30,以提高系统性能。实验表明,使用该方法处理从 5 种异常振动活动生成的 8069 个振动数据图像,对于两种光纤铺设场景,即地下埋设或沿高铁周界挂在刀片刺网上,系统的 mAP@.5 为 99.5%,每秒 555 帧(FPS),可检测到每秒 135.1 公里的理论最大距离。它可以快速有效地识别异常振动活动,降低长距离多振动沿高铁线路的系统误报率,同时在保持准确性的前提下显著降低计算成本。