Suppr超能文献

一种基于深度学习的Φ-OTDR传感系统事件识别方法。

An Event Recognition Method for Φ-OTDR Sensing System Based on Deep Learning.

作者信息

Shi Yi, Wang Yuanye, Zhao Lei, Fan Zhun

机构信息

Guangdong Provincial Key Laboratory of Digital Signal and Image Processing, School of Engineering, Shantou University, Shantou 515063, China.

出版信息

Sensors (Basel). 2019 Aug 4;19(15):3421. doi: 10.3390/s19153421.

Abstract

Phase-sensitive optical time domain reflectometer (Φ-OTDR) based distributed optical fiber sensing system has been widely used in many fields such as long range pipeline pre-warning, perimeter security and structure health monitoring. However, the lack of event recognition ability is always being the bottleneck of Φ-OTDR in field application. An event recognition method based on deep learning is proposed in this paper. This method directly uses the temporal-spatial data matrix from Φ-OTDR as the input of a convolutional neural network (CNN). Only a simple bandpass filtering and a gray scale transformation are needed as the pre-processing, which achieves real-time. Besides, an optimized network structure with small size, high training speed and high classification accuracy is built. Experiment results based on 5644 events samples show that this network can achieve 96.67% classification accuracy in recognition of 5 kinds of events and the retraining time is only 7 min for a new sensing setup.

摘要

基于相敏光时域反射仪(Φ-OTDR)的分布式光纤传感系统已广泛应用于长距离管道预警、周界安全和结构健康监测等诸多领域。然而,缺乏事件识别能力一直是Φ-OTDR在现场应用中的瓶颈。本文提出了一种基于深度学习的事件识别方法。该方法直接将来自Φ-OTDR的时空数据矩阵作为卷积神经网络(CNN)的输入。预处理仅需简单的带通滤波和灰度变换,实现了实时性。此外,构建了一种尺寸小、训练速度快、分类精度高的优化网络结构。基于5644个事件样本的实验结果表明,该网络在识别5种事件时的分类准确率可达96.67%,对于新的传感设置,重新训练时间仅为7分钟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验