Suppr超能文献

干旱区土壤有机质的环境变量与光谱特征耦合估算。

Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features.

机构信息

Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China.

Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, School of Geographical Sciences, Xinjiang University, Urumqi 830046, China.

出版信息

Sensors (Basel). 2022 Feb 4;22(3):1194. doi: 10.3390/s22031194.

Abstract

The soil organic matter (SOM) content is a key factor affecting the function and health of soil ecosystems. For measurements of land reclamation and soil fertility, SOM monitoring using visible and near-infrared spectroscopy (Vis-NIR) is one approach to quantifying soil quality, and Vis-NIR is important for monitoring the SOM content in a broad and nondestructive manner. To investigate the influence of environmental factors and Vis-NIR spectroscopy in estimating SOM, 249 soil samples were collected from the Werigan-Kuqa oasis in Xinjiang, China, and their spectral reflectance, SOM content and soil salinity were measured. To classify and improve the prediction accuracy, we also take into account the soil salinity content as a variable indicator. Relevant environmental variables were extracted using remote sensing datasets (land-use/land-cover (LULC), digital elevation model (DEM), World Reference Base for Soil Resources (WRB), and soil texture). On the basis of Savitzky-Golay (S-G) smoothing and first derivative (FD) preprocessing of the original spectrum, three clusters were obtained by K-means clustering through the use of Vis-NIR and used as spectral classification variables. Using Vis-NIR as Model 1, Vis-NIR combined with spectral classification as Model 2, environmental variables as Model 3, and the combination of all the above variables (Vis-NIR, spectral classification, environmental variables, and soil salinity) as Model 4, a SOM content estimation model was constructed using partial least squares regression (PLSR). Using the 249 soil samples, the modeling set contained 166 samples and the validation set contained 83 samples. The results showed that Model 2 (validation r = 0.78) was better than Model 1 (validation r = 0.76). The prediction accuracy for Model 4 (validation r = 0.85) was better than Model 2 (validation r = 0.78). Among these, Model 3 was the worst (validation r = 0.39). Therefore, the combination of environmental variables with Vis-NIR spectroscopy to estimate SOM content is an important method and has important implications for improving the accuracy of SOM predictions in arid regions.

摘要

土壤有机质(SOM)含量是影响土壤生态系统功能和健康的关键因素。对于土地开垦和土壤肥力的测量,使用可见近红外光谱(Vis-NIR)监测 SOM 是量化土壤质量的一种方法,Vis-NIR 对于广泛和非破坏性地监测 SOM 含量非常重要。为了研究环境因素和 Vis-NIR 光谱在估计 SOM 中的影响,从中国新疆的渭干-库车绿洲采集了 249 个土壤样本,并测量了它们的光谱反射率、SOM 含量和土壤盐分。为了分类和提高预测精度,我们还考虑了土壤盐分含量作为变量指标。使用遥感数据集(土地利用/土地覆盖(LULC)、数字高程模型(DEM)、世界土壤资源参考基础(WRB)和土壤质地)提取相关环境变量。在对原始光谱进行 Savitzky-Golay(S-G)平滑和一阶导数(FD)预处理的基础上,通过 K-均值聚类得到三个聚类,并用其作为光谱分类变量。使用 Vis-NIR 作为模型 1,将 Vis-NIR 与光谱分类结合作为模型 2,将环境变量作为模型 3,以及将所有上述变量(Vis-NIR、光谱分类、环境变量和土壤盐分)结合作为模型 4,采用偏最小二乘回归(PLSR)构建 SOM 含量估算模型。使用 249 个土壤样本,建模集包含 166 个样本,验证集包含 83 个样本。结果表明,模型 2(验证 r = 0.78)优于模型 1(验证 r = 0.76)。模型 4(验证 r = 0.85)的预测精度优于模型 2(验证 r = 0.78)。其中,模型 3 的预测精度最差(验证 r = 0.39)。因此,将环境变量与 Vis-NIR 光谱相结合来估计 SOM 含量是一种重要的方法,对提高干旱地区 SOM 预测的准确性具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1616/8838907/1325602eb784/sensors-22-01194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验